
Taste Projection in Models of Social Learning∗

Tristan Gagnon-Bartsch†

Old Version—New Version Under Revision

November 15, 2016

Abstract

This paper studies the implications of taste projection—the tendency to overestimate how sim-
ilar others’ preferences are to our own—within social-learning environments. Individuals se-
quentially choose among two options with payoffs dependent on an unknown state of the world
and one’s idiosyncratic, privately-observed taste. Learning about the state from others’ choices
requires people to assess whether uncommon actions were likely provoked by atypical tastes or
private information contradicting the public belief. Taste projectors over-attribute these actions
to information, which prevents some (and perhaps all) from ever learning their correct action.
A player’s long-run beliefs are determined by her own taste and the extent to which she and all
others project. When each thinks her taste is most common, all players inevitably choose the
same option and each grows certain this choice is optimal. But if some acknowledge they have
an uncommon taste, social beliefs and behavior may perpetually cycle—history never provides
a clear message about the optimal choice. If players additionally update their beliefs about
others’ tastes from their actions, an initial projection error can be intensified: agents conclude
more share their preference than originally anticipated. These predictions are distinct from
rational learning under uncertainty about the distribution of preferences.
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1 Introduction

We use the actions of our friends, neighbors, and peers to guide many of our own decisions. This
is true of both daily choices—where to dine or which film to watch—and those with larger stakes,
such as choosing a college major, selecting stocks, or deciding for whom to vote.1 In each of these
domains where social learning is likely at play, the idiosyncratic tastes of those we observe surely
influence their decisions. Hence, when inferring our own optimal action from others’ choices, we
should account for their differing goals and motives. For instance, observing a friend dine at a
particular restaurant reflects both the quality of that restaurant and her taste for the cuisine. And a
stock purchase signals both a company’s expected value and the investor’s risk preferences. In both
of these cases, two individuals with the same information may reasonably choose different actions.

How we disentangle the information driving others’ choices from their tastes relies on our per-
ceptions of how preferences are distributed within our social network. But evidence on “social
projection” and the “false-consensus effect” suggests that these perceptions are often biased: we
tend to overestimate how similar others’ tastes are to our own.2 For instance, people overestimate
how many share their tastes for typical consumption goods (Ross, Greene, and House 1977), polit-
ical candidates (Delavande and Manski 2012), and risk (Faro and Rottenstreich 2006). Van Boven
and Loewenstein (2003) show that people also project transitory preferences, and hence overes-
timate how many share their current feelings like hunger and thirst. In social-learning settings,
such misprediction of others’ tastes introduces a systematic bias in what people infer from others’
choices. For instance, fixing the number of people in a restaurant, those with a strong preference
for its cuisine—who wrongly expect many to attend—develop a more pessimistic perception of its
quality than those with a weaker preference. By incorporating taste projection into canonical mod-
els of observational learning (namely, those of Banerjee 1992; Bikhchandani et al. 1992; Smith
and Sørensen 2000), this paper studies how and when these misperceptions lead society astray.

To outline the model, suppose investors with varied risk preferences wish to learn whether a
new company A is riskier, but has higher potential return, than a known alternative B. A fraction
λ prefers the safer investment whereas 1 − λ seeks the higher-return alternative. From experience
with similar companies, investors have noisy private information about the relative risk. Thus, be-
fore performance data materializes, investors use others’ choices to glean additional information.
But heterogeneity in tastes complicates inference. Did a predecessor choose A because she’s risk

1For instance, in consumption domains, Cai et al. (2009), Salganik et al. (2006), and Moretti (2010) demonstrate
the impact of social learning on the demand for restaurants, music, and movies, respectively. In domains with larger
stakes, social learning has been shown to influence investment in new crops (Conley and Udry 2010) and generate
momentum in primary elections (Knight and Schiff 2010).

2While such taste-based predictions may be rational when people use their own preferences as information, Engel-
mann and Strobel (2012) and others show this tendency persists even when people have access to an unbiased sample
of others’ tastes, which is inconsistent with Bayesian updating. Section 2.2 reviews this evidence in detail.
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averse with private information that A is safe? Or due to precisely the opposite preferences and
information? Smith and Sørensen (2000) characterize players’ long-run beliefs and behavior in
such settings provided that λ—the distribution of preferences—is common knowledge. This paper,
in contrast, does so assuming agents project tastes: each overestimates how many seek her same
objective. The risk averse think λ̂ > λ; the return seekers think λ̂ < λ. When these two different
types of traders observe somebody invest in A, they draw different conclusions about that prede-
cessor’s signal, and hence about the attributes of the asset: relative to her risk-neutral counterpart,
the risk-averse investor overestimates the likelihood that A is safer than B.

How do these differing conclusions interact and shape social learning? Since each type forms
different beliefs about predecessors’ information, taste projectors never reach long-run agreement
on the state and, thus, never mutually learn the truth. In settings where rational agents always
learn, projection leads some types to continually choose incorrectly. Whether a player chooses
optimally is determined by both her own taste—which dictates how she interprets past actions—
and the extent of all others’ biases—which determines the distribution of actions she observes. But
in many of the cases I consider, projection creates a herd: all players grow confident that a particular
option X is optimal for her taste, irrespective of whether this is true. These results help explain
three phenomena inconsistent with rational learning. First, taste projection suggests why uniform
behavior may arise despite diverse preferences. Second, it shows how society can develop and
maintain confident yet false beliefs even when observing an arbitrarily large sample of informative
behavior.3 Third, naive learning can perpetuate a false-consensus bias. That is, if agents learn
about others’ tastes from actions but ignore differences in prior beliefs, then each type can grow
more confident over time that her taste is most common.

Section 2 formalizes the model, which adds taste projection to an observational-learning setting
based on Smith and Sørensen (2000). A sequence of agents, N acting per period, choose between
two actions, A and B. An action’s payoff derives from characteristics along two dimensions: (1)
the “vertical” dimension measures commonly-valued quality, q, and (2) the “horizontal dimension”
specifies a heterogeneously valued attribute, z.4 For example, q may be the quality of a restaurant
or film, while z represents the cuisine or genre. Or q is the expected return from a college major
or stock, and z is either the major’s subject or the stock’s risk. Players have diverse tastes over
the horizontal attribute: each prefers an attribute closest to her own taste, θ. For instance, fixing
expected income, a student prefers the college major with subject z closest to her interests, θ.
Agents learn about (q, z) from private signals and the history of prior choices. To crisply identify

3The rational-herding literature shows that, when learning from others, society may forever choose suboptimal
actions. But as Eyster and Rabin (2010) note, in any setting where an incorrect herd may arise, rational agents never
grow confident in the state of the world. The rational-herding literature thus does not explain how society may develop
confident yet false beliefs.

4This terminology is borrowed from models of spatial differentiation, like Hotelling (1929) and Downs (1957).
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the effects of projection, I focus on environments where rational agents learn the state.5

To model taste projection, I assume agents mispredict the distribution of tastes over horizontal
attributes. Loosely, a player who prefers attribute z over z′ overestimates how many share this pref-
erence, and the amount by which she overestimates is increasing in the intensity of her preference.
For instance, a risk averse individual overestimates how many seek a safe investment relative to a
risk neutral individual. I additionally assume that agents are naive about this bias: they neglect that
those with different preferences disagree on the distribution of tastes. That is, each player wrongly
assumes that others draw inference using her same model of the world, and thus thinks all players
share her belief about the state after any observation.6

Sections 3 and 4 study the case where quality is known and the only uncertainty is over horizon-
tal attributes—for instance, investors are uncertain about the relative risk of two startup companies.
Following Smith and Sørensen (2000), I assume only two states of the world: along the horizontal
dimension, A is either to the left or right of B. Section 3 first develops preliminaries on how a
player updates her beliefs over these two states as a function of the actions she observes and her
perceived measure of those with right-leaning preferences. This measure, denoted λ̂, dictates how
she uses new observations. If she underestimates the variance in tastes—say, λ̂ = 0.9 when in
truth λ = 0.75—then she treats actions as overly-precise signals of the underlying private infor-
mation and her beliefs overreact relative to rational beliefs. If she overestimates the variance in
tastes—say, λ̂ = 0.6—then she treats actions as less informative and her beliefs underreact. And if
she mispredicts the majority taste—say, λ̂ = 0.4—then her belief and the rational belief move in
opposite directions after any observation.

Section 4 studies asymptotic properties of this learning process. Unlike rational beliefs, conver-
gence to a stationary limit is not guaranteed, and convergence to fully-incorrect beliefs is possible.7

However, limit beliefs are pinned down by the collection of all players’ perceptions of the taste
distribution. Characterizing limit beliefs amounts to assessing whether a system of beliefs (i.e., a
belief for each type of player) is stochastically stable. I show that there exists a stable belief among
taste projectors only if, at that belief, each player observes more people than expected choosing
what she thought would be the majority action. It follows that taste projectors never converge on

5I assume private signals have unbounded informativeness. In this environment, bounded informativeness gener-
ates information cascades, whereby the information contained in the history of play eventually swamps the information
contained in the most informative signal. The setting also precludes “confounded learning”—explored by Smith and
Sørensen (2000)—where players may converge to an uncertain stationary belief when the quality difference between
actions is not too large. Appendix A addresses when confounded learning may occur and how this possibility alters
my baseline results.

6A variety of research demonstrates that people tend to overestimate how many share their beliefs. For instance,
Egan, Merkle, and Weber (2014) survey a panel of private investors and find that people overestimate how many share
their expectations about returns.

7Since a taste projector mispredicts the action frequency she should see conditional on her belief about the state,
her beliefs do not form a martingale.
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identical long-run beliefs, and thus some agents necessarily fail to learn.
When and how learning fails depends on whether people agree on the majority taste. When each

thinks her taste is most common, agents inevitably herd on a single action X . All grow confident—
some rightly, some wrongly—that X is optimal for their taste. This results in beliefs polarized
according to preference. In the investment example, risk-averse individuals grow confident that
option A is safe, while return-seeking individuals conclude it is risky.8 Quite simply, since each
thinks her taste is most common, she finds it optimal to follow the herd absent a strong contrary
signal. As such, taste projection offers one reason why uniform behavior may emerge despite
heterogeneity in tastes.9 When many act per round (N → ∞), the minority necessarily learns
incorrectly, and all choose the action optimal for the majority taste. Hence, when people learn from
others’ take-up decisions, strong projection implies inadequate adoption of new technologies or
welfare programs beneficial only to a minority. Observational learning is not only inefficient in this
case, but potentially harmful to society.10

Although taste projection provides a clear logic for herding, uniform behavior is not a general
consequence. When players correctly agree on the majority preference, they never settle on a
fixed belief, let alone herd. Instead, society’s opinion of the optimal action perpetually cycles.11

Returning to the investment example, if society is initially confident that A is safe, then all of the
risk-averse individuals, say 75% of the market, choose A. But those investors expect to see more
than 75% select A. Their best explanation for such low investment is that other risk-averse traders
have strong private information that B is in fact safer. As such, the risk averse switch to B, and B
becomes the most prevalent choice. This sends a clear message to future investors: B is preferred
by the majority, and is thus the safer asset. Once the market is confident that B is safe, the same
logic repeats, which sends investors back toward A. Hence, beliefs perpetually oscillate.12 This

8The beliefs of agents with opposing tastes display a strong form of polarization where they grow fully confident
in alternative hypotheses. Other studies of persistent disagreement in learning settings, like Andreoni and Mylovanov
(2012), demonstrate a much weaker form of polarization where agents with common preferences disagree, but not
confidently, on the optimal action. Rational models fail to explain confident disagreement.

9Sorensen (2006) studies the selection of health-care plans and demonstrates that social learning leads to uniformity
in choice despite heterogeneity in individuals’ optimal plans. After the study, many switch away from the “herd” plan.
Similarly, some medical practices are widely held as universally beneficial (e.g., avoiding salt), even though their
efficacy likely depends on heterogeneous characteristics of patients.

10Although rational observational learning can cause incorrect herds (e.g., Bikchandani, et al. 1992), it is necessarily
welfare improving (on average) relative to relying solely on private information. Eyster and Rabin (2010, 2014) show
how a distinct form of naive learning in which people neglect redundancies in information is also socially harmful.

11In this case, projection generates fad-like behavior in a setting where rational behavior always converges. In other
social-learning settings, however, even rational behavior may fail to converge. This may happens, for example, when
players observe only their immediate predecessors (Çelen and Kariv 2004). Outside of rational models, Acemoglu,
Como, Fagnani and Ozdaglar (2012) show that opinions may persistently fluctuate when learning in a network if some
agents are “stubborn” and never update their beliefs. Such models help explain, for instance, persistent fluctuations in
political opinion (e.g., Kramer 1971; Cohen 2003).

12While tempting to think that this non-convergence results from the binary state space—agents expect to observe
one of only two long-run action frequencies—non-convergence can arise even with a continuous state space.
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cycling is most dramatic when the majority’s perception of the taste distribution is less biased than
those in the minority. In this case, spells where all believe A is safe are followed by even longer
spells where all think B is safe, and so on. Beliefs spend roughly equal time favoring each state,
causing players to make worse choices, on average, when learning from others than if they simply
followed their private information.

Section 5 introduces uncertainty over quality. I assume that quality differences are potentially
large enough that players may prefer the same option. For example, all diners may attend the same
restaurant despite differences in taste if it has exceptional quality. I show that with two types, no
matter the true quality difference between options, society necessarily concludes it is large enough
that all prefer the same choice. Intuitively, projection causes agents to first herd on some action
X , which consequently suggests that X has superior quality. And since people inevitably herd on
the more popular action, taste-based popularity is systemically misattributed to quality. This sys-
tematic misconstrual of “vertical” and “horizontal” components of preference may help explain the
notoriously slow adoption of new agricultural technologies in environments where their produc-
tivities vary across farms: people over-attribute low, selective take-up to general ineffectiveness.13

Additionally, even when the horizontal attributes ofA andB are known—for instance, diners know
A serves Argentinian food while B serves Brazilian—agents still systematically mislearn quality.
Fans of Brazilian food attribute moderate popularity of B to limited quality rather than accepting
that fewer people enjoy such cuisine. But Argentines reach a higher perception of B’s quality to
explain higher-than-expected attendance. Those with the most positive view of B’s quality are
those who prefer the attributes of A.

Section 6 considers uncertainty over the distribution of tastes. In this case, agents revise their
models of others’ preferences as they observe actions. However, such revision does not necessarily
correct errors stemming from taste projection. If agents neglect heterogeneity in priors—they fail
to fully appreciate that those with different tastes have divergent beliefs about the distribution of
preferences—then players may still fail to learn their optimal action. In fact, observing others can
intensify the bias in perceived taste distributions, leading all agents to conclude that their taste is
most common. This may happen, for example, when the history begins with many choosing A.
In the investment example, a risk-averse individual infers that A is likely safe and λ > 1

2 . But
to a risk-neutral agent, this indicates that A is likely risky and λ < 1

2 . Absent strong contrary
information, each type best responds with A. These conflicting beliefs perpetuate the herd, leading
people to conclude that all investors share a similar taste.

With uncertainty over the distribution of tastes, even a rational player’s perceived taste distri-
bution will depend on her own type. Throughout the paper, I contrast results stemming from such

13Munshi (2003) shows that the adoption rates of hybrid “high-yield” crops in India greatly depend on how variable
is output with respect to inputs. Strands of hybrid rice with productivity sensitive to idiosyncratic farm characteristics
have very slow adoption rates.
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rational taste-dependent perceptions with those following from naive taste projection.14 While ra-
tional beliefs always converge and never grow fully polarized, learning may still fail. With positive
probability, agents converge to an interior “confounding” belief where they cannot discern, say, if
many choose A because A is safe and most are risk averse, or because A is risky and most seek a
high return. Smith and Sørensen (2000) show that under perfect information about the distribution,
such beliefs exist only when quality differences between options are sufficiently large. In contrast, I
show that with imperfect information, they always exist. This extension provides a natural explana-
tion for persistent disagreement.15 At a confounding belief, people with different tastes continually
disagree on payoffs: if most choose A, then, relative to a return-seeking agent, a risk-averse agent
thinks it is more likely that A is safe.

I conclude in Section 7 by discussing related models and by considering taste projection and
social “mislearning” in broader contexts. In particular, I discuss why and how taste projection can
distort inference in more general environments where agents can directly communicate beliefs or
payoffs. For instance, imagine learning about a restaurant’s quality from online reviews. Diners
with “sophisticated” tastes may report mediocre quality from a meal that typical diners find remark-
able. Hence, typical diners are misled when they underestimate how often they glean advice from
sophisticates. I also discuss situations where agents have biased perceptions of the type distribution
distinct from projection, such as a false sense of uniqueness. Finally, I highlight some shortcomings
of the model and suggest avenues for future research.

2 Model

This section describes the basic decision environment and motivates a model of social taste projec-
tion. I then define a solution concept in the presence of projection which pins down beliefs about
others’ perceptions and strategies. Two immediate implications follow from these assumptions: (1)
players with different tastes draw a distinct inference from any history of play, and (2) each player
wrongly thinks all draw the same inference.

2.1 Social-Learning Environment

Actions and Payoffs. There are two actions {A,B} =: X . Each action X ∈ X has quality qX ∈ R,
and location zX ∈ R. Like standard spatial-differentiation models (e.g., Hotelling 1929; Downs
1957), each player prefers a higher “vertical” quality, but her preference over “horizontal” location
depends on her type, θ ∈ R. For simplicity, I assume players’ have a utility function separable in

14This model, analyzed in the Appendix, is identical to Section 6 aside from the assumption of full rationality.
15Alternative explanations include uncertainty over the distribution of private information, as explored in Acemoglu,

Chernozhukov, and Yildiz (2007 and 2009).
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quality and location:
u(X, θ) = qX − k(zX − θ)2, (1)

where k > 0 is a commonly-known preference parameter.16 Like Downs’ (1957) model of polit-
ical competition, q may measure the competence of a candidate, while z indicates how liberal or
conservative she is. An agent’s type θ indicates her most preferred attribute z ∈ R.17

States. Agents wish to learn the collection of each options’ characteristics, ((qA, qB), (zA, zB)).
To make clear how taste projection affects learning, I focus on the simplest such environment:
there are only two possible location profiles, (zA, zB) ∈ {(−1, 1), (1,−1)}. That is, A is either
to the left of B, (zA, zB) = (−1, 1), or to the right of B, (zA, zB) = (1,−1). Let ζ ∈ {L,R}
denote the “location state”, where ζ = L if and only if A is left of B.18 Furthermore, given the
utility function above, only differences in quality matter for choice, not absolute levels. Hence, let
∆q := qA− qB and denote by D the (finite) set of possible quality differences. The payoff-relevant
state is ω = (ζ,∆q) ∈ {L,R} × D =: Ω. Agents share a common prior π1 ∈ ∆(Ω).

Preference Types. Players’ preference types are i.i.d. and are distributed according to c.d.f. G
with finite support Θ := {θ : θ = ±jδ, j = 1, ..., J}, δ > 0.19 I call types θ < 0 left types—they
prefer the left option provided both options have identical quality; similarly, θ > 0 are right types.
As it plays a key role in inference, I denote by λ := 1−G(0) the measure of right types. With out
loss of generality, assume right types comprise the majority: λ > 1/2.

Timing. In every period t = 1, 2, ..., a new set of N ≥ 1 players is drawn, and each simul-
taneously takes an action X ∈ X . Each player is labeled nt; t is the period in which she acts,
and n ∈ {1, 2, ..., N} is her label within that period. Since all N players in t act independently
conditional on the history of play, the number of A’s taken in t, denoted by at ∈ {0, 1, ..., N}, is a
sufficient statistic for the profile of actions observed in t. Hence, let ht = (a1, ..., at−1) denote the
history of the game up to time t, where h1 = ∅.

Beliefs. Before acting, Player nt observes (1) her preference type θnt, (2) a private i.i.d. signal
snt ∈ R correlated with the state, and (3) the complete ordered history of actions, ht. Her choice,
which is based on a combination of this information, partially reveals her private signal to followers.

16The assumption that attribute z has value equal to the squared distance from one’s location is without loss of
generality. Results are identical if (zX − θ)2 is replaced by any metric d(zX , θ).

17For ease of exposition, I often refer to preference types simply as “types” despite the fact that a complete descrip-
tion of a type also includes a player’s private information. To avoid confusion, I will be explicit whenever I refer to this
complete notion of type.

18While admittedly restrictive, this binary-state assumption is common in the literature. Smith and Sørensen (2000),
who study rational learning in a similar setting, similarly focus on two feasible location profiles and note that additional
states come at “significant algebraic cost.”

19Aside from Section 6, I assume beliefs over the distribution of tastes, G, are degenerate. In Section 6, I introduce
uncertainty over G, which implies that an agent’s perceived distribution of tastes rationally depends on her own type
θ. This generalization allows us to contrast learning in the presence of rational taste-dependent distributional beliefs
with learning under taste projection.
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For each ω ∈ Ω, let πθt (ω) denote a type-θ player’s belief that the state is ω conditional solely on ht
and the prior; I call this the public belief in t.20 Much of this paper analyzes the properties of each
type’s public-belief process, 〈πθt 〉.

Finally, denote by Γ the game described above, and let Γ(G) denote the game explicitly as
a function of the taste distribution (keeping all other aspects fixed). Taste projection, which I
introduce in the next section, will assume that one misperceives the taste distribution as Ĝ 6= G,
but has an otherwise correct model of the game: her perceived game is Γ(Ĝ).

2.2 Taste Projection: Evidence and Model

This section reviews the literature motivating my main assumption of taste projection, and it pro-
vides a simple formulation of this bias consisting of two key assumptions: (1) an agent’s perceived
preference distribution depends on her own taste, and (2) she neglects that others’ perceptions de-
pend on their tastes.

2.2.1 Motivating Evidence

The notion that people systematically misptredict others’ tastes is supported by several strands of
research. A large literature in social psychology studies inter-personal projection—the idea that
people’s own habits, values, and behavioral responses bias their estimates of how common are
such habits, values, and actions in the general population. Early work, including Ross, Greene,
and House (1977) who coin the term “false-consensus effect”, find positive correlation between
subjects’ own preference responses and their estimates of others’ responses.21 Many similar studies
followed that document this correlation across a wide range of domains, like preferences over
political ideology and candidates, risk preferences, and preferences for income redistribution.22

20While I use the term “public belief” to match the literature, “public” in this context does not mean the belief is
common across players. Taste projection and the solution concept introduced below naturally imply that different taste
types draw different inference from ht. Instead, “public” refers to the source of the belief, as it is derived from publicly
observable behavior.

21Subjects in Ross, Greene, and House (1977) gave their own (binary) response to a question, and predicted the
fraction of subjects who answered similarly. (E.g., “Are you politically left of center?”; “Do you prefer basketball
over football?”; “Will there be women in the supreme court in the next decade?”; “Do you prefer Italian movies
over French?”) Out of 34 questions, 32 were consistent with taste projection: those who answer “yes” to a question
overestimate how many others will answer “yes” relative to those who answer “no”.

22Marks and Miller (1987) review 45 different studies documenting the false-consensus effect published over the
decade following Ross, Greene, and House (1977). Mullen, Atkins, Champion, Edwards, Hardy, Story, and Vanderlok
(1985) find robust evidence of this correlation in a meta-study of 115 tests. Across domains, Brown (1982) and
Rouhana, O’Dwyer and Vaso (1997) find type-dependent perceptions of political preference; Cruces, et al. (2013) find
type-dependent misprediction of the income distribution in Argentina and demonstrate that this leads to misprediction
of population preferences for income redistribution; Faro and Rottenstreich (2006) find correlation between subjects’
own risk preference and their perception of others’ risk preferences.
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Each of these studies, however, simply document correlation between a subject’s own taste and
her prediction. Is such correlation necessarily indicative of an error? If there is uncertainty about
others’ tastes, the answer is no. As first noted by Dawes (1989), with uncertainty, a Bayesian
should use her own taste as information, resulting in rational type-dependent estimates that appear
consistent with a “false-consensus” bias.

Motivated by this critique, Krueger and Clement (1994) and others provide evidence that this
“bias” remains even when subjects have information about others’ preferences. They find that sub-
jects use their own preference information more so than that of anonymous others when making
population predictions, inconsistent with Bayesian rationality.23 In incentivized settings, Engel-
mann and Strobel (2012) verify that a “truly-false” consensus bias remains so long as subjects must
exert a small amount of effort to get information on others’ choices; when this information is not
freely available or made salient, people rely too heavily on their own choice when predicting the
choices of others. So long as attending to others’ tastes comes at some cost, this result suggests
that people can hold incorrect type-dependent beliefs about population preferences even in settings
with ample opportunity to observe others—that is, where the “Dawes critique” should have little
bearing.24

Relatedly, economists have argued that intra-personal projection bias—exaggerating the degree
to which future preferences resemble current preferences—influences behavior.25 To the extent that
preferences of contemporaneous others are similarly difficult to predict, we should expect the logic
of intrapersonal projection bias to suggest interpersonal-projection. An intuition for intrapersonal
projection is that we “mentally trade places” with our future selves, and in doing so, project our
current preference states. But this exact logic applies when empathizing with another. Indeed,
Van Boven and Loewenstein (2003) show that the same transient preference states shown to warp
subjects’ perceptions of own future preferences also distort predictions of others’ preferences. Sub-
jects’ predictions of whether thirst or hunger would be more bothersome to hypothetical hikers lost
without food or water were biased in the direction of subjects’ own exercise-induced thirst. More
economically relevant, Van Boven, Dunning and Loewenstein (2000, 2003) show that sellers who
experience an endowment effect project their high valuation of a good onto the valuations of po-

23Krueger and Clement (1994) deduce that when estimating the percent of subjects that endorse some action or
preference, subjects use their own response nearly twice as much as the response of an anonymous other. A rational
Bayesian should, of course, use these two responses equally.

24Using data from the American Life Panel, Delavande and Manski (2012) show that perceptions of others’ can-
didate preferences in the 2008 U.S. presidential election and 2010 congressional election were consistent with the
false-consensus effect even after the release of poll results. While this finding may indicate additional statistical bi-
ases (e.g., failure to appreciate the Law of Large Numbers—see Benjamin, Raymond, and Rabin, 2013), it shows that
taste-dependent perceptions can persist despite opportunity to learn about others’ tastes.

25For empirical studies see Busse, Pope, Pope, and Silva-Risso (2012), Simonsohn, (2010), and Conlin,
O’Donoghue, and Vogelsang (2007). For example, Busse, et al. shows that projection bias affects demand and prices
in large, high-stakes markets for cars and houses. Loewenstein, O’Donoghue, and Rabin (2003) provide a general
overview of the evidence and draw out implications of a formal theoretical model.
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tential buyers, causing sellers to set inefficiently high prices.

2.2.2 Perceived Distributions: Biased First-Order Beliefs

I model taste projection by assuming an individual’s preference type θ influences her perceived
distribution of types. In truth θ ∼ G. Denote type θ’s perception of G by Ĝ(·|θ). Consistent
with the false-consensus effect, I assume right-leaning types think right types are relatively more
common, while left-leaning types think the opposite.

Assumption 1. (Stochastically Dominating Perceptions.) Ĝ(θ|θ′) weakly first-order stochastically

dominates Ĝ(θ|θ′′) if and only if θ′ > θ′′. That is, whenever θ′ > θ′′, Ĝ(θ|θ′) ≤ Ĝ(θ|θ′′) for all

θ ∈ Θ.26

The more right-leaning is an agent’s taste, the higher is her estimate of those with right-leaning
tastes. For example, people with conservative political views overestimate the share of those who
prefer the conservative candidate, or those with high risk aversion overestimate the share seek-
ing safe investment strategies. The perceived measure of right types—a key statistic in drawing
inference from actions—is denoted by λ̂(θ); dominance implies λ̂(θ) is weakly increasing in θ.

For sake of intuition, I often consider a simple form of projection I call choice-dependent pro-
jection: one’s perceived distribution depends only on her preferred location, not on the intensity of
this preference. In this case, all left types think the distribution is Ĝl, whereas all right types think
it’s Ĝr, and the perceptions satisfy Ĝl � G � Ĝr.27 This essentially implies just two types—left
and right. Left types think the measure of right types is λ̂l := 1− Ĝr(0), while right types perceive
it as λ̂r := 1 − Ĝl(0), and λ̂l < λ < λ̂r: left types underestimate the measure of right types, but
right types overestimate it.28 As I show in Section 4, two classes of choice-dependent projection
will lead to very different learning outcomes. I define and differentiate them now.

26I assume weak domination to allow different θ’s to hold identical perceptions. If θ′ > θ′′ then the two types
need not have different perceptions of the distribution of tastes; however, if their perceptions do differ, it must be the
case that Ĝ(θ|θ′) strictly first-order stochastically dominates Ĝ(θ|θ′′): Ĝ(θ|θ′) ≤ Ĝ(θ|θ′′) for all θ ∈ Θ with strict
inequality for some θ. Let % and � denote weak and strict first-order stochastic dominance, respectively.

27The term “choice dependent” follows from the fact that under this class of misperceptions, when the characteris-
tics of the options are known, people overestimate the share of others that would choose the same option as themselves.
However, they don’t necessarily overestimate the share of people with their identical taste parameter, θ. Hence we can
think of one’s preferred choice or behavior as the object of projection rather than the underlying intensity of that choice.

28This model of taste projection makes assumptions directly on perceived distributions of tastes, and maintains
that players understand how taste θ translates into decision utility. Alternatively, following Loewenstein, O’Donoghue
and Rabin’s (2003) model of intrapersonal projection, we could assume a player with taste θ mispredicts the utility
of a player with taste θ̃, which ultimately leads to a misperception of the measure of players that prefer different
actions. Suppose that it is known that A is on the right and B on the left. A taste-type θ whose own location-
dependent utility from consuming A is u(A, θ) = −k(1−θ)2 mispredicts a θ̃-type’s location-dependent utility from A
as ûθ(A, θ̃) = −αk(1− θ)2 − (1−α)kd(1− θ̃)2 where α ∈ [0, 1] parameterizes the extent of the bias: θ’s perception
of θ̃’s utility is a linear combination of θ̃’s true utility and θ’s own utility—θ projects her own valuation onto θ̃’s. It
follows that a θ-type’s perception of the measure of individuals who prefer A to B in terms of location is the measure
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Definition 1. Suppose players suffer choice-dependent projection where left and right types respec-

tively believe the measure of right types is λ̂l and λ̂r.

1. (λ̂l, λ̂r) satisfy strong taste projection if λ̂l < 1
2 < λ < λ̂r.

2. (λ̂l, λ̂r) satisfy weak taste projection if 1
2 < λ̂l < λ < λ̂r.

Strong and weak taste projection differ in whether people agree on the majority preference. Strong
projection implies that types disagree; each type thinks her own taste is most common. Under weak
projection, all players correctly acknowledge that right types comprise the majority.

2.2.3 Naivete: Biased Second-Order Beliefs

I assume that a taste projector is “naive” about her bias: she neglects that those with different tastes
have alternative perceptions of the preference distribution. Instead, she simply thinks all agents
share a common perception.

Assumption 2. (Naivete.) For all θ′ ∈ Θ, a type-θ player believes Ĝ(·|θ′) = Ĝ(·|θ).

This assumption pins down second-order beliefs—beliefs about others’ perceived distributions.
A player uses these second-order beliefs in thinking through how an observee learns from her
predecessors, and hence in rationalizing that observee’s action. Naivete implies that a player fails
to engage with alternative ways of updating beliefs and instead thinks others’ form beliefs as she
does. For instance, a risk-averse agent who thinks 90% of investors are risk averse naively assumes
that a risk-neutral agent thinks the same.

Naivete is the assumption differentiating “taste projection” from rational taste-dependent distri-
butional beliefs, which arise whenever Bayesian players are uncertain of the distribution. In contrast
to a taste projector, a rational agent knows precisely the map between an agent’s type and her belief
about the distribution, and hence accounts for the fact that other types interpret evidence differently
than she does. More broadly, naivete departs from much of the literature on non-common priors,
which assumes rational expectations about the distribution of priors across players (e.g., Harrison
and Kreps; Morris 1996). As such, this paper explores one particular way in which people may
neglect heterogeneity in beliefs.29

of θ̃ such that
θ̃ > − α

1− αθ. (2)

The true measure is that of the set of types that satisfy Equation 2 when the right-hand side of is set to zero. But when
θ > 0—the agent has right-leaning preferences—the right-hand side of Equation 2 is negative. She thus overestimates
the share of players that prefer the right-positioned option. Similarly, when θ < 0, the left-type θ underestimates the
fraction that prefer right-located options. Hence, projection of utility leads to the same qualitative result that people
overestimate the share of payers that prefer their desired action that I directly assume here.

29Little work has been done in this area, however there are many domains where this form of neglect seems plausible
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2.3 Naive Quasi-Bayesian Best Response

Aside from naive taste projection—incorrect first- and second-order beliefs about G—each Player
nt satisfies the basic epistemic conditions governing play in a Bayesian Nash equilibrium of her
perceived game, Γ(Ĝ(·|θnt)). First, each player is “quasi-Bayes rational” in that she maximizes
expected payoffs given beliefs formed through putatively correct Bayesian updating using her
(false) model of the world.30 Second, each assumes common knowledge of Bayes rationality
within her perceived game. Thus, a naive player correctly predicts others’ strategies—the map
σ : Θ × ∆(Ω) → X from one’s type and belief to an action.31 But since she fails to account for
others’ discrepant models, she systematically mispredicts other types’ beliefs. The model of non-
rational play simply comprises a particular theory of how players form the incorrect beliefs against
which they optimize.32

It’s worth emphasizing some basic implications of these assumptions. Taste projection in social-
learning environments implies that players who differ in taste draw different inference from the
same history of play. It follows from projection (Assumption 1) that for any t, πθt = πθ

′
t if and only

if Ĝ(·|θ) = Ĝ(·|θ′). Naivete (Assumption 2) further implies that each agent thinks her “public”
belief πθt is commonly shared. Simply put, agents unknowingly draw distinct beliefs from behavior.
These implications suggest two ways in which a taste projector fails to understand the motives
behind the actions she observes: she has incorrect theories of (1) predecessors’ tastes, and (2) what
predecessors have inferred from those moving before them.33

and worthy of further exploration. Nisbett and Ross (1980), when discussing how people fail to allow for uncertainties
in others’ perceptions, make the following point emphasizing the need to address naivete: “The real source of difficulty
does not lie in the fact that human beings subjectively define the situations they face, nor even in the fact that they do so
in variable and unpredictable ways. Rather, the problem lies in their failure to recognize and make adequate inferential
allowance for this variability and unpredictability.” Although the literature on the false-consensus effect rarely elicits
second-order beliefs, the few papers that do, including Egan, Merkle, and Weber (2014), find that people significantly
overestimate how many share their second-order beliefs, which suggests at least some degree of naivete.

30This modeling technique—assuming people are “quasi-Bayesian”—is often used in a growing literature in eco-
nomics studying the implications of systematic biases on inference. While pioneered by Barberis, Shleifer and Vishny
(1998) to study biased inference in asset markets, it has since been adopted, to name a few, by Rabin (2002), Rabin and
Vayanos (2010) to study inference by believers in the “law of small numbers”, Madarasz (2012) to study information
projection, and Benjamin, Rabin and Raymond (2012) to study inference by non-believers in the law of large numbers.

31In this social-learning environment, this strategy is in fact the rational Bayesian-equilibrium strategy.
32Note that the social-learning game studied in this paper, which is dominance solvable, requires only a weak

solution concept of best response rather than equilibrium. For this reason, I make no additional assumptions relating
to the equilibrium condition of consistent beliefs about strategies—whether players believe others hold correct beliefs
about their strategy.

33Nisbett and Ross (1980) fittingly point out: “One of the most important consequences of this state of affairs is
that when people make incorrect inferences about situational details, or fail to recognize that the same situation can
be construed in different ways by different people, they are likely to draw erroneous conclusions about individuals
whose behavior they learn about or observe.” Here, neglecting the fact that others hold different perceptions of the
taste distribution leads to erroneous conclusions about others’ beliefs.
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3 Learning Horizontal Attributes: Preliminaries

In this section and the next, I analyze learning about the horizontal locations of A and B when
their quality difference is known. For simplicity, fix ∆q = 0. Players simply wish to learn state
ω = ζ ∈ {L,R}—whether A is located to the left (ω = L) or right (ω = R) of B. For example,
suppose the costs, q, of two risky technologies are known, but investors want to learn which is
riskier. Suppose the horizontal dimension measures risk, and assets to the left are riskier, but have
potential for higher return, than those to the right. Agents choose their best guess at the safer option
if and only if their risk aversion is sufficiently high (θ > 0).34 The remainder of this section derives
players’ choice and inference rules, and discusses how projection distorts this inference rule. The
implications of projection on long-run learning are analyzed in Section 4.

Private Information. Before acting, each Player nt observes a private signal snt ∈ R about ω
from which she computes via Bayes’ rule her private belief pnt that ω = R. Following Smith and
Sørensen (2000), I work directly with the distribution of private beliefs. Conditional on ω, private
beliefs are i.i.d. across individuals with c.d.f. Fω; FL and FR are differentiable, and mutually
absolutely continuous with common support supp(F ), so that no signal perfectly reveals the state
of the world.

Assumption 3. (Monotone Likelihood Ratio Property (MLRP).) Let fω denote the density of pri-

vate beliefs in state ω. fR(p)/fL(p) is increasing in p.

Assumption 4. (Unbounded Private Beliefs.) For each ω, co(supp(Fω)) = [0, 1].

Assumption 3 implies private beliefs in favor of ω are relatively more likely whenever ω is true.
Assumption 4 implies private beliefs are “unbounded”: from any non-degenerate prior π and for
any r̄ ∈ (0, 1), a player moves with positive probability to beliefs at most r̄ and with positive
probability to beliefs at least r̄. Hence, players receive signals ranging from nearly fully revealing,
to uninformative, to (rarely) nearly fully misleading. The “unbounded” signal structure provides a
sharp rational benchmark, as it implies rational agents inevitably learn ω.35

Public Information and Individual Decision-Making. Prior to making a choice, each Player
nt observes the history ht, and computes public belief πt, the probability of ω = R conditional
on ht. From private belief pnt and πt, she then forms posterior r that ω = R via Bayes’ rule,

34Alternatively, the model captures agents learning about new technologies with known prices but unknown pro-
ductivities that depend on θ. For example, Munshi (2003) describes hybrid seed with output dependent on soil or other
input characteristics. Farmers wish to learn the seed type yielding the most productive match with their plot.

35An understanding has emerged that unbounded private beliefs lead to the successful aggregation of information
in a variety of models and contexts. Aside from Smith and Sørensen (2000), Acemoglu, Dahleh, Lobel, and Ozdaglar
(2011) and Smith and Sørensen (2008), respectively, show that unbounded beliefs lead to learning in a large class of
networks and sampling regimes. Mossel, Sly and Tamuz (2012) show that unbounded beliefs lead to learning in a
setting with repeated interactions.
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r(p, π) = pπ/[pπ+(1−p)(1−π)]. Players maximize expected utility given this posterior, yielding
the following decision rule: a right type chooses A iff r(p, π) > 1/2 whereas a left type chooses A
iff r(p, π) ≤ 1/2.

Observers draw inference about Player nt’s private information pnt from her action Xnt by
inverting this decision rule to form cutoffs on pnt: conditional on θnt, Xnt reveals if her private
belief was above or below this cutoff.36 I derive these cutoffs in terms of the public likelihood

ratio, ` := (1 − π)/π, which is the inverse of the relative likelihood of state R; the lower is `, the
more likely is ω = R. Now we can re-phrase the decision rule above as a cutoff strategy.

Lemma 1. Let p(`) := `/(1 + `). Fixing public likelihood ratio `, Player nt with private belief p

has the following decision rule:

1. If θnt < 0, then Xnt = A⇔ p ≤ p(`),

2. If θnt > 0, then Xnt = A⇔ p ≥ p(`).

The private-belief threshold p(`) is the private belief that renders type θ indifferent between A and
B given public likelihood ratio `. Intuitively, to choose A, a “left” type must have a sufficiently
strong private belief thatA is located to the left—p is sufficiently low—whereas a “right” type must
have a sufficiently strong private belief that A is located to the right—her p must be sufficiently
high.

3.1 Belief Dynamics

This section derives equations describing the evolution of public likelihood ratios 〈`θt 〉. As ex-
plained in Section 2.3, types with distinct perceptions of G draw different inference from history
ht, and thus their public beliefs follow distinct processes. Let `t ∈ R|Θ|+ be the vector of each type’s
public likelihood ratio in t, ordered from least to greatest θ. Let `θt denote a generic element of
`t. When there are just two distinct perceptions, as is the case with choice-dependent projection, I
write `t = (`lt, `rt ), where `t := `t(θ < 0) is a left type’s inference from ht, and `rt := `t(θ > 0) is a
right type’s.

Each process 〈`θt 〉 is described by the initial value `θ1 = 1 (recall players beginning with common
prior π1 = 1/2) and transition equation `θt+1 = ϕθ(at, `θt ) specifying for each t how public beliefs
update after observing actions at given public belief `θt . Since players update using Bayes’ rule
within their mispecified model, ϕθ(at, `θt ) = Ψθ(at, `θt )`θt , where Ψt(at, `θt ) is the likelihood of

36While the solution concept implies that a naive projector correctly knows others’ strategies, she mispredicts their
private-belief thresholds since she neglects that other types have divergent perceptions of the public belief. This error,
which I highlight in the next subsection, is one of the two ways in which a naive projector mislearns from others’
actions.
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observing at in ω = L relative to ω = L. Piecing these definitions together, beliefs move according
to

`θt+1 = ϕθ(at, `θt ) = Ψθ(at, `)`θt = ψθ(at | `θt , L)
ψθ(at | `θt , R)`

θ
t . (3)

ψθ(a | `, ω) in Equation 3 denotes the probability that at people choose A in state ω according to
a θ-type player’s incorrect model, which assumes that all players in t share public belief `θt and
tastes have distribution Ĝ(·|θ). Since behavior of each player in t is independent conditional on ht,
the perceived distribution of actions within a period is Binomial(N ,αθ(`, ω)), where αθ(`, ω) :=
P̂rθ(Xnt = A | `, ω) is a type θ’s perceived probability that a random player chooses A given ` and
ω. Formally,

ψθ(a | `, ω) =
(
N

a

)
αθ(`, ω)a

[
1− αθ(`, ω)

]N−a
, (4)

and
αθ(`, ω) =

[
1− λ̂(θ)

]
Fω
(
p(`)

)
+ λ̂(θ)

[
1− Fω

(
p(`)

)]
. (5)

The first (second) term of Equation 5 is just the perceived measure of left (right) types times the
perceived probability that a left (right) type takes A specified by Lemma 1. In contrast, the true
probability that of Xnt = A in state ω, denoted α(`, ω), depends on the current beliefs of all types,
`:

α(`, ω) =
[
1− λ̂(θ)

]
Fω
(
p(`θ̃t )

)
+ λ̂(θ)

[
1− Fω

(
p(`θ̃t )

)]
. (6)

Comparing Equations 5 and 6 makes clear the two errors a naive taste-projector commits when
learning from actions: she (a) mispredicts the frequency of types, ĝ, and (b) wrongly thinks all
types share her public belief `, so she miscalculates other types’ cutoffs p(`), and thus mispredicts
the probability that other types take A.

Remark on “Confounded Learning”. The assumption that ∆q = 0 comes at some loss of gen-
erality. Smith and Sørensen (2000) show that rational observational learning with heterogeneous
preferences may fail even when private beliefs are unbounded. Specifically, there may exist an
interior steady-state belief ˆ̀, which they call a “confounding belief”, such that ϕ(a, `) = ` for
any a ∈ {0, ..., N}; each possible observation is equally likely in ω = L and ω = R. If beliefs
converge to this interior point, which happens with positive probability whenever ˆ̀ exists, then
agents never learn. In my environment, a confounding belief exists only if |∆q| is sufficiently large.
Hence, assuming ∆q = 0 rules out this possibility. However, ∆q = 0 is not a knife-edge case; the
non-existence of confounding beliefs is robust.

Lemma 2. Fixing all components of the game Γ aside from ∆q, there is a robust (open, non-empty)

set of quality differences ∆q for which there exist no confounding beliefs.
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As a function of the perceived distributions of tastes, there exists ∆̃q > 0 such that for all ∆q ∈
(−∆̃q, ∆̃q), no confounding belief exists.

Appendix A discusses confounded learning in more detail, and derives bounds on ∆q such
that no confounding belief exists. Further, it explores how the basic results derived under the
assumption of ∆q = 0 change if a confounding belief exists. If one does, the logic under ∆q = 0
still holds, and results are identical aside from the possibility of convergence to the confounding
belief. Consequently, results indicating the possibility, or impossibility, of society reaching some
confident belief are unchanged by the presence of a confounding belief.

3.2 Effect of Taste Projection on Updating

This section analyzes comparative statics of λ̂(θ) on the belief-transition equation `t+1 = ϕθ(a, `t),
making clear how taste projection distorts the interpretation of new evidence. The results estab-
lished here play an important role in understanding the long-run dynamics studied in Section 4.

First, one’s current belief and perception of tastes λ̂(θ) dictates the interpretation of observation
at ∈ {0, ..., N}; at is evidence in favor of ω = R whenever `θt+1 = ϕθ(at, `θt ) < `θt .

Lemma 3. For each θ ∈ Θ and perceived public likelihood ratio `θt ∈ R+, there exists a value

κ
(
`θt , θ

)
∈ (0, 1) such that observation at is interpreted as evidence in favor of ω = R if and only

if (at/N > κ
(
`θt , θ

)
and λ̂(θ) > 1/2) or (at/N < κ

(
`θt , θ

)
and λ̂(θ) < 1/2), where

κ(`, θ) =
(

1 + log
(
αθ(`, L)
αθ(`, R)

)/
log

(
1− αθ(`, R)
1− αθ(`, L)

))−1

. (7)

An investor who thinks most are risk averse must observe sufficiently many choose A in order to
interpret at as evidence that A is safer than B, but one who thinks most are return seeking must see
sufficiently few choose A.

The limit values of κ(π, θ)—values near π = 0 and π = 1—are critical for determining whether
a confident belief is “stable”: if players grows confident, then what they subsequently observe
maintains this confidence. For instance, when λ̂(θ) > 1

2 , limπθ→1 κ(πθ, θ) = λ̂(θ). This means
that when a θ type grows nearly confident that ω = R (i.e., πθ ≈ 1), she must observe at least
λ̂(θ) A’s (on average) for her to remain confident that ω = R (i.e., for πθ to stay near 1). But if
the true fraction right types, λ, is observed and λ < λ̂(θ), then πθ instead moves downward from
1. Hence, observing exactly what a rational agent expects to see in ω = R can reduce the biased
agent’s confidence in ω = R. This logic is central in understanding when some constellation of
beliefs across types is stable, which is developed further in Section 4.

Figure 1 demonstrates this effect on beliefs. Suppose N = 100 and at = 75 is observed.
The various curves show the effect of at on beliefs as a function of the current public belief (x-
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axis) for various values of λ̂(θ). The y-axis is the (negative) change in the log-likelihood ratio:
log `θt+1 − log `θt . If this value is positive, the agent perceives at as evidence for ω = R; if it is
negative, then at supports ω = L.
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Figure 1: Negative change the in public log-likelihood ratio, − log Ψθ(π), as a function of the
current belief, π, after observing action at/N = .75 for various values of λ̂(θ). A type-θ player
interprets at as evidence for ω = R if and only if − log Ψθ(π) > 0.

Another implication of Lemma 3, evident from Figure 1, is what I call the perceived-majority

effect: two agents who disagree on the majority preference may draw precisely opposite interpre-
tations from the same observation.

Proposition 1. (Perceived-Majority Effect.) For any `θt ∈ R+, if at/N > λ̂(θ), then `θt+1 < `θt if

and only if λ̂(θ) > 1
2 . Similarly, if at/N < 1− λ̂(θ), then `θt+1 > `θt if and only if λ̂(θ) > 1

2 .

Corollary 1. Suppose N = 1. If at = 1 then `θt+1 < `θt if and only if λ̂(θ) > 1
2 . Similarly, if at = 0

then `θt+1 > `θt if and only if λ̂(θ) > 1
2 .

Proposition 1 states that when a sufficiently large proportion of agents choose X in t, people who
disagree on the majority preference will disagree on the interpretation of this evidence. If 75% of
investors buy A, then one who thinks 60% are risk averse concludes A is likely safe, but another
who believes only 40% are risk averse thinks A is risky. The corollary, which assumes agents act
in single file (N = 1), is even more straightforward: an individual always interprets action A as
evidence for ω = R if and only if she believes that the majority of players are right types. This
result has very different implications depending on whether people suffer strong or weak projection
(Definition 1); left and right types disagree on which hypotheses action A supports if and only if
they suffer strong projection.
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The next result, which I call the variance effect, describes how λ̂(θ) affects the magnitude of
changes in beliefs.

Proposition 2. (Variance Effect.) Suppose N = 1. For any `θt ∈ R+ and at ∈ {0, 1}, |`θt+1 − `θt |
strictly increasing in λ̂(θ) on

[
1
2 , 1

]
and strictly decreasing in λ̂(θ) on

[
0, 1

2

]
To interpret this result, note that λ̂(θ)

[
1 − λ̂(θ)

]
is type θ’s perception of the variance in tastes.

Hence, Proposition 2 implies that as one’s perceived variance in types decreases, her beliefs change
by a greater amount after any observation. As perceived variance decreases, a player becomes more
confident about the tastes of those whom she observes, so their choices are seemingly more precise
signals of the their private information. If she overestimates the likelihood that predecessors are
right types, then observing A, say, is interpreted as overly strong evidence that A is optimal for
right types.

This result has important implications under weak projection. In this case, the right-type belief
changes by more than the rational belief after any action—beliefs are volatile, and over-responsive.
The left-type belief, however, changes by too little relative to rational updating—they are relatively
conservative, and under-responsive. In terms of an example, a very risk-averse investor (a right
type) reacts too strongly to a predecessor’s choice since she’s too confident that it reflects her own
best investment strategy. But a risk-neutral investor (a left type), is too skeptical of the evidence—if
she thinks it’s roughly equally likely that her predecessor was risk averse or risk neutral, then his
choice tells her relatively little about her own optimal strategy.

Figure 2 demonstrates both the “single-file” majority and variance effects. The plot shows the
effect of observing choice A today on tomorrow’s belief, πθt+1, as a function of today’s belief, πθt .
Each curves assumes a different values of λ̂(θ). Comparing λ̂(θ) = 0.25 to the other cases high-
lights the perceived-majority effect: λ̂(θ) < 1/2 implies tomorrow’s belief is lower than today’s.
We see the variance effect among the curves with λ̂(θ) > 1/2: the magnitude of changes in beliefs
increases with λ̂(θ).
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Figure 2: Next-period’s public belief πθt+1 as a function of the current public belief, πθt , assuming
choice A is observed in t. The 45◦-line is plotted for reference.

4 Learning Horizontal Attributes: Long-Run Beliefs

Building on the setup of Section 3, this section investigates the effect of taste projection on long-run
beliefs and behavior when players learn about horizontal locations. I show that when the bias is
strong, taste projection always leads to inefficient herds and fully-confident beliefs. But when it is
weak, it leads to cyclical behavior and persistently fluctuating beliefs.

To arrive at these conclusions, Section 4.1 introduces the possible learning outcomes under
projection, and 4.2 derives conditions on players’ perceptions of λ that determine which equilib-
rium beliefs are stochastically stable. These conditions hold for a general model of perceptions,
where each of an arbitrary finite number of types may hold a distinct perception λ̂(θ). But to build
intuition for the particular way in which learning fails as a function of the extent of projection,
Sections 4.3 and 4.4 assume a simple two-type setting. There, a left and right type have distinct
perceptions λ̂ = (λ̂l, λ̂r) and beliefs, `t = (`lt, `rt ). Section 4.5 discusses how these “two-type”
results generalize to cases with many perceptions.

4.1 Potential Learning Outcomes

I first introduce terminology for the various learning outcomes that can occur. Learning among
type-θ players is (1) complete if πθt converge almost surely to the truth; (2) incorrect if πθt con-
verges to certainty in a false state; (3) incomplete if πθt does not converge to certainty in any state.
Learning fails for type θ if it is incorrect or incomplete. Finally, I say universal learning is com-
plete if learning is complete for all θ ∈ Θ. Otherwise, universal learning fails. Without loss of
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generality, I assume ω = R—action A is located on the right—so complete learning for type-θ
entails Pr(limt→∞ π

θ
t = 1) = 1, or, in terms of the public likelihood ratio, `θt

a.s.−→ 0.37

As a benchmark, if people are fully-rational (λ̂(θ) = λ for all θ ∈ Θ), then they necessarily
learn the true state in the long run.

Proposition 3. If λ̂(θ) = λ for all θ ∈ Θ, then learning is complete: πθt
a.s.−→ 1 for all θ ∈ Θ.

This result—first derived in Smith and Sørensen (2000)—follows from the martingale feature of
rational public beliefs. Provided λ̂(θ) = λ for each θ, `θt is identical across θ in all t, and 〈`θt 〉 is a
martingale conditional on state ω = R. By the Martingale Convergence Theorem, 〈`θt 〉 converges
almost surely to some random variable `θ∞ := limt→∞ `

θ
t .

With projection, however, public beliefs do not form a martingale:

Lemma 4. The likelihood-ratio processes 〈`θt 〉 is a martingale conditional on state R if and only if

λ̂(θ) = λ for all θ ∈ Θ.

As long as λ̂(θ) 6= λ for some θ ∈ Θ, all players mispredict the distribution of actions in t. The
perceived probability of outcome at in ω = R according to any θ’s model, ψθ

(
at | `θt , R

)
, is

generically not equal to the true probability. The true probability depends on all types’ beliefs, `t,
but a niave type θ thinks it depends solely on `θt .

Lemma 4 implies we cannot rely on standard martingale methods to study the limit properties of
the joint-belief process 〈`t〉. To proceed, I first identify the set L ⊂ R|Θ|+ of “candidate equilibria”
such that if biased beliefs converge to a point belief, then these limit points must lie in L .38 Second,
I evaluate whether these candidate equilibria are stochastically stable.

It turns out that L is the set of confident beliefs: ` such that for each θ, `θ ∈ {0,∞}. This
means that if beliefs never converge to a fixed interior belief where people remain uncertain. To
see this, first note that conditional on state ω = R, the process of actions and beliefs 〈at, `t〉 is a
discrete-time Markov process on {0, ..., N} × R|Θ|+ . Transitions along the θ-dimension given by

`θt+1 = ϕθ
(
a, `θt

)
with probability ψ(a, `t) (a = 0, ..., N), (8)

where ϕθ(a, `) is the belief-transition function introduced in Section 3.1 (Equation 3) and ψ(a, `)
is the true probability of observing a at `. Granted stationary limits exist, Theorems B.1 and
B.2 of Smith and Sørensen (2000) determine `θ∞ for a such a Markovian belief process with state-
dependent transitions. Since private beliefs are continuously distributed and the transition functions
ϕθ(a, ·) are continuous for all a, it follows from their result that any ˆ̀θ ∈ supp

(
`θ∞
)

is a fixed point

37Although much of the analysis is in terms of the public likelihood ratio, I present some results in terms of the
sequence of beliefs πθt for sake of intuition.

38The term equilibrium, in this context, refers to a profile of beliefs ` which is a fixed point of the belief process.
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of the Markov process. Hence, for each component ˆ̀θ of ˆ̀∈ supp(`∞) and all a ∈ {0, ..., N},

ˆ̀θ = ϕθ
(
a, ˆ̀θ

)
. (9)

Given the assumption of unbounded private beliefs, the only fixed points of process 8, and thus the
only possible stationary beliefs, are confident beliefs.

Lemma 5. Suppose that there exists a real, nonnegative random variable `θ∞ such that `θt
a.s.−→ `θ∞.

Then supp
(
`θ∞
)
⊆ {0,∞}.

From Lemma 5, L = {0,∞}|Θ|. For sake of presenting key results in terms of beliefs π ∈
[0, 1], rather than likelihood ratios ` ∈ R+, let Π be the set of candidate equilibria in belief space.
Lemma 5 implies any long-run stationary belief lies in Π := {0, 1}|Θ|.

We have now identified our candidate long-run stationary equilibria, Π. But to which of these
equilibria will society converge? The next section (4.2) shows that agents’ perceptions of popula-
tion preferences, dictate which, if any, of these beliefs are asymptotically stable.

4.2 Stability of Confident Beliefs

This section derives, as a function of mispredictions, a condition specifying when a candidate equi-
librium belief is locally stable. Section 4.2.1 derives sufficient conditions on the Markov process (8)
for stability, and Section 4.2.2 establishes from these conditions a stability criterion based directly
on the primitives of the model: each agent’s perception of others’ tastes, λ̂(θ).

4.2.1 Local Stability of the Belief Process

Let ˆ̀∈ L denote a fixed point of process 8 with generic element ˆ̀θ.

Definition 2. Fixed point ˆ̀ is stable if for any open ball about ˆ̀, N (ˆ̀), there is a positive proba-

bility that `t ∈ N (ˆ̀) for all t ∈ N provided `1 ∈ N (ˆ̀).

Stability means that if the belief process enters a neighborhood of the fixed point, then it will
remain in that neighborhood with positive probability. Stability conditions follow from the logic
of stability within linear systems. Although the belief process is nonlinear, near the fixed point we
can approximate the process by its first-order Taylor series expansion; stability is assessed locally
by applying standard linear-system criteria to this “linearized” approximation.

Formally, near fixed point ˆ̀, type θ’s belief process 〈`θt 〉 is well approximated by the following
stochastic difference equation: starting at (at, `θt − ˆ̀θ), the continuation is(
at+1,

∂
∂`
ϕθ(at, ˆ̀)(`θt − ˆ̀θ)

)
with chance ψ(at, ˆ̀). That is, the continuation is approximately the

first-order Taylor expansion of ϕθ
(
at, `

θ
t

)
about fixed point ˆ̀θ. Now, for any linear process 〈yt〉,
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where yt+1 = bayt with chance pa for a = 0, 1, ..., N , we can write yt = b
I0(t)
0 × ...× bIN (t)

N y1 where
Ia(t) counts the realization of a’s in the first t − 1 steps. Since Ia(t)/t → pa almost surely by the
Strong Law of Large Numbers, the product χ := bp0

0 × ... × b
pN
N fixes the long-run stability of the

stochastic system 〈yt〉 near fixed point y = 0:

lim
t→∞

yt = lim
t→∞

(bp0
0 × ...× b

pN
N )t y1 = lim

t→∞
χty1. (10)

Clearly from Equation 10, the linear process converges to the fixed point 0 if and only if the product
χ < 1. The analog of χ for the linearized belief process in the neighborhood of ˆ̀is

χθ(ˆ̀) :=
N∏
a=0

(
∂

∂`
ϕθ
(
a, ˆ̀θ

))ψ(a,`)

. (11)

Accordingly, χθ(ˆ̀)—which I call the stability coefficient of type θ’s beliefs near ˆ̀—determines the
local stability of the original nonlinear system (8) near ˆ̀.

Lemma 6. Suppose ˆ̀∈ L . ˆ̀ is stable if χθ(ˆ̀) < 1 for all θ ∈ Θ, and unstable if for any θ ∈ Θ,

χθ(ˆ̀) > 1.

Lemma 6 is simply an extension of Smith and Sørensen’s (2000) Theorem 4, which estab-
lishes this stability criterion for an arbitrary Markov process like (8) so long as continuation func-
tions ϕθ(a, ·) and transition probability functions ψ(a, ·) are C1 (once continuously differentiable).
While they use this condition to show stability of interior fixed points of the rational learning pro-
cess, I use it to demonstrate both the instability of correct beliefs and the stability of false beliefs
within the biased learning model.

4.2.2 Characterization of Confident Equilibria

I now derive from Lemma 6 a stability criterion based directly on the primitives of the model—
people’s perceptions of others’ tastes. This proposition shows that we can asses the stability of an
equilibrium belief simply by comparing what people expect to observe at that belief with what they
actually observe.39

This requires some final pieces of notation. Let F̂θ : X × R+ → [0, 1] be θ’s perceived
probability of observing action X given `θ, and let F : X ×R|Θ|+ → [0, 1] be the true probability of

39Gagnon-Bartsch and Rabin (2014) study a similar issue of stability in a model of biased social learning in which
players draw inference from the history of play, but wrongly assume the behavior of each person they observe reflects
solely that person’s private information. In some settings, the behavior of a generation confident in the true state can
lead observers to beliefs far from the truth: confident, correct beliefs are unstable. The “inferential naivete” bias in
Gagnon-Bartsch and Rabin (2014) was first studied in a more standard environment by Eyster and Rabin (2010), and
a similar error where people neglect the redundancy in information when learning socially is analyzed by DeMarzo,
Vayanos and Zwiebel (2003).
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observing action X given belief profile `. Additionally, let Mθ : R+ → X denote the the expected
majority action according to θ’s model at `, Mθ(`) := arg maxX∈X .F̂θ(X, `)

Proposition 4. Let ˆ̀∈ L be a fixed point of the joint-belief process (8).

1. ˆ̀is a stable if for all θ ∈ Θ, F̂θ

(
M(ˆ̀θ), ˆ̀θ

)
< F

(
M(ˆ̀θ), ˆ̀

)
.

2. ˆ̀is unstable if for any θ ∈ Θ, F̂θ

(
M
(

ˆ̀θ
)
, ˆ̀θ
)
> F

(
M(ˆ̀θ), ˆ̀

)
.

F (A, ˆ̀) is the long-run frequency of action A if all players beliefs are fixed at ˆ̀. Proposition 4
states that, given long-run behavior F (A, ˆ̀), stationary-equilibrium belief ˆ̀ is stable if all players
observe a greater share choosing their anticipated majority action than expected; it is unstable if
any player observes fewer than expected choosing her anticipated majority action.

For example, suppose a risk-averse agent believes most seek the safer asset (λ̂r > 1
2 ), and grows

nearly confident that A is safe. To remain confident, the fraction of times others’ choose A must
exceed λ̂r; if not, she necessarily becomes less confident over time. Essentially, observing a larger
majority share than expected only reinforces a player’s hypothesis about the action optimal for the
majority taste. The concept is similar self-confirming equilibrium (e.g., Fudenberg and Levine,
1993): an incorrect belief may be stable so long as the behavior of those best responding to that
belief supports the false hypothesis. Even if an investor wrongly concludes that A is safe, so long
as more people choose it than she anticipates, she’ll continue to believe it is safe.

An implication of Proposition 4 is that not all types can reach identical beliefs in the long run.

Proposition 5. If people project tastes, i.e., there exist θ, θ′ such that θ > θ′ and λ̂(θ) > λ > λ̂(θ′),

then for each π̂ ∈ {0, 1}, Pr(limt→∞ π
θ
t = π̂ ∀ θ) = 0. That is, there is no long-run agreement

across types.

An immediate, but important, corollary is that not all agents can learn the truth.

Corollary 2. If people project tastes, i.e., there exist θ, θ′ such that θ > θ′ and λ̂(θ) > λ > λ̂(θ′),

then universal learning fails.

Since rational agents necessarily learn the truth in this setting, Corollary 2 demonstrates a discon-
tinuity of rational learning. Adding any degree of taste projection implies some agents necessarily
fail to learn. The basic intuition is that if beliefs grow close to the truth—A is optimal for the
majority taste—then society observes roughly λ choose A. But people with the majority taste, who
overestimate how many share this taste, expect to observe a frequency of A’s strictly greater than
λ. By Proposition 4, their beliefs necessarily become less confident over time.

The mere fact that some agents necessarily fail to learn tells us little about what agents do come
to believe or their long-run behavior. Within a simple two-type setting, the next two subsections
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use Proposition 4 to answer these questions, which depend on whether projection is strong or weak
(Definition 1). Section C of the Appendix also uses Proposition 4 to show how learning may fail
when agents suffer alternative distributional errors distinct from projection, such as a false sense of
uniqueness.

4.3 Strong Projection

This section (4.3) and the next (4.4) assume agents suffer “choice-dependent” projection. Hence,
there are just two distinct perceptions of λ, λ̂ = (λ̂l,λ̂r), and two distinct belief sequences,
`t = (`lt, `θ). This section studies learning under strong projection and the next analyzes weak
(Definition 1). In each case, I identify Π∗(λ̂l, λ̂r)—the set of stable equilibrium beliefs given
λ̂l, λ̂r—and show specifically how and why learning fails.

The proposition below shows that if each type thinks her taste is most common (strong projec-
tion), then people all choose the same action in the long run. Consequently, each grows confident
that this action is optimal for her taste, resulting in polarized beliefs across types. To see this,
consider two types of investors—risk averse (“right types”) and risk neutral (“left types”)—who
each think their type is most common; say, λr = 0.8, and λl = 0.4, when in truth, λ = 0.6. In
a large market—many act per period—agents have very different expectations about first-period
purchases: when A is safe, the risk averse expect around 80% to buy A, whereas the risk seeking
expect about 40% to do so. If in fact A is safe, they observe 60%. Like in Proposition 1, the risk
averse perceive this as evidence that A is safe, but the return seeking think it means A is risky. With
these opposing beliefs, nearly all investors best respond in the next round by buying A, which only
further polarizes the investors’ beliefs. Eventually, all return seekers grow confident in the incorrect
state.

Proposition 6. Under strong taste projection, the following are true:

1. Π∗(λ̂l, λ̂r) = {(0, 1), (1, 0)}.

2. When N is finite, πrt converges almost surely to either 0 or 1, and each outcome arises with

positive probability. If πrt converges to 0 (1), then πlt almost surely converges to 1 (0), and all

players take action A (B) in the long run.

3. As N →∞, (πlt, πrt ) converges almost surely to (0, 1); the majority type learns correctly, but

the minority type learns incorrectly. All players take action A in the long run.

The intuition is simple, and follows along the lines of the example above. Eventually some
action, say A, earns a majority following. Projection implies that, absent strong contrary signals,
each player believes it’s the majority action that best suits her taste. As such, the frequency at
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which A is chosen grows, reinforcing an observer’s belief that A suits the more common taste—
and hence her taste. It’s worth noting that because players are naive, they don’t understand that
the herd results from opposing beliefs. While they think this “anomalous” herd on A is a highly
unlikely event, A is any player’s clear best response. The equilibrium is essentially self confirming:
behavior following from polarized beliefs reinforces, and never contradicts, false beliefs.

With a finite number of players moving each round (N ), either action may grow most popular
in early periods. Hence, the action on which players inevitably herd is random.40 Society suffers
a form of “social” confirmation bias, where initial evidence has a lasting influence on long-run be-
liefs. Since people never expect a herd, the surprisingly uniform behavior moves them too quickly
toward confident beliefs.41 While either herd is possible, the majority type learns correctly more
often when λ or N increases—these variables increase the likelihood that the action optimal for the
majority taste, A, is most popular among early periods. As N →∞, agents almost surely herd on
A.

Strong projection leads to an extremely robust form of herding. With heterogeneous prefer-
ences, a “herd” is typically defined (e.g., Smith and Sørensen, 2000) by players of each type acting
identically—rational “herds” do not preclude heterogeneity in behavior. With strong projection,
however, players of every type act identically, eliminating heterogeneity in long-run behavior. In
such a “uniform herd”, agents inefficiently over adopt the more popular action. Sorensen (2006)
finds an example of this among workers within an academic department who observe others’ choice
of health-care plans before selecting their own. While employees differ significantly in their pre-
ferred plan characteristics, they tend to herd on a single plan.42 Many employees later switch,
reflecting the heterogeneity in the optimal match.

Uniform herding implies that observing others can be socially harmful. For sufficiently precise
private signals, people are necessarily worse off by observing others than if they simply followed
private information. Depending on which action people herd, when observing others a share ν ∈
{1 − λ, λ} correctly learns, while fraction 1 − ν chooses the inferior option. Instead, an agent
choosing solely on private information does so correctly with probability ρ := 1 − FR(1/2). So

40In simulations of the model with signal densities fR(p) = 2p and fL(p) = 2(1 − p) and parameters λ = 0.75,
λ̂r = 0.9, λ̂l = 0.4 and N = 1 (agents move in single file), the majority type learns correctly roughly 80% of the time.

41See Rabin and Schrag (1999) for a discussion of confirmatory bias in individual learning settings. Eyster and
Rabin (2010) also show how biased social learning causes society to grow too confident too quickly in which ever state
initial evidence supports.

42Employees only observe choices of others’ within their department. Interestingly, the “herd” plan varies across
departments.
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long as

ρ >
λE
[
u(A, θ)− u(B, θ) | θ > 0

]
λE
[
u(A, θ)− u(B, θ) | θ > 0

]
+ (1− λ)E

[
u(B, θ)− u(A, θ) | θ < 0

]
=

λE
[
θ | θ > 0

]
λE
[
θ | θ > 0

]
− (1− λ)E

[
θ | θ < 0

] , (12)

observing others reduces social welfare. With only two types, θ ∈ {−1, 1}, condition 12 reduces
to ρ > λ: social learning is harmful whenever the probability that an agent has a correct signal
exceeds the chance a random other shares her taste. Finally, the welfare loss from social learning
is asymmetric, as it falls entirely on agents with a particular taste. For large N , the burden falls
entirely on those with the minority taste.

It’s worth noting why strong projection precludes agents from converging to identical beliefs.43

If society is nearly certain that ω = R, then fraction λ chooses A. Left types, who think they’re
most common, think this suggests ω = L. This reduces their confidence that ω = R. More
generally, since biased beliefs do not form a martingale, they display predictable drift. Near the
truth ˆ̀ = (0, 0), both `lt and `rt are strict submartingales: they increase in expectation over time,
and hence drift away from the truth.

Lemma 7. Assume strong taste projection. There exists a neighborhood N about the truth ˆ̀ =
(0, 0) such that for all (`lt, `rt ) ∈ N , E[`rt+1 | `lt, `rt ] > `rt and E[`lt+1 | `lt, `rt ] > `lt.

In terms of Proposition 4, near ˆ̀ = (0, 0) each player sees fewer than expected choose the action
she thought would be most popular. Figure 3 shows the drift in beliefs for all regions of the joint-
belief space.44 Beliefs drift away from each fixed point where opposing types agree, π̂ = (0, 0)
and π̂ = (1, 1), but drift toward confident disagreement.

43This is a direct consequence of Proposition 5. This discuss provides intuition for that proposition and why
different types fail to agree in the long run.

44As shown in Figure 3, there are four regions of “belief space”, [0, 1]2, with distinct martingale properties. The
label (+,−), for example, implies that `lt is a submartingale and `rt is a supermartingale when restricted to the indicated
region of R2

+. In general, there exists a function Ll : R+ × [0, 1] → R+ such that if λ̂l > 1/2, then E[`lt+1 | `t] >
`lt ⇔ `rt > Ll(`lt, λ̂l), and if λ̂l < 1/2, then E[`lt+1 | `t] > `lt ⇔ `rt < Ll(`lt, λ̂l). Similarly, there exists a
function Lr : R+ × [0, 1] → R+ such that if λ̂r > 1/2, then E[`rt+1 | `t] > `rt ⇔ `lt < Lr(`rt , λ̂r), and if
λ̂r < 1/2, then E[`rt+1 | `t] > `rt ⇔ `lt > Lr(`rt , λ̂r). Both Ll and Lr are monotonic in `θ and intersect exactly once.
Figure 3 (and also Figure 4) show Lθ in units of probabilities rather than likelihood ratios. That is, the figures plot
Pθ(π) := Lθ

(
π/(1− π), λ̂(θ)

)
/
[
1 + Lθ

(
π/(1− π), λ̂(θ)

)]
.

26



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

πl

π
r

 

 

Pl

Pr

(+,−)

(−,+)

(+,+)

(−,−)

Figure 3: Direction of drift at each point in the joint-belief space assuming “strong” taste projec-
tion.

4.4 Weak Projection

Although “strong” projection suggests a clear logic for herding, uniform behavior is not a general
consequence. When projection is weak enough so that people agree on the majority preference,
players never settle on a fixed belief nor herd on a single action.

Proposition 7. Assume weak taste projection. Π∗(λ̂l, λ̂r) = ∅: There exists no stable fixed point

for `lt or `rt .

Proposition 7 implies that beliefs of each type almost surely fail to converge to a fixed value. This
results from agents never observing a pattern of behavior consistent with either state given their
mispecified model. As such, beliefs perpetually oscillate from favoring one state to the other. Since
an agent’s belief forms a martingale with respect to her own model, she wrongly anticipates that
her opinion will eventually settle down. Instead, whenever it begins to settle down, she observes
new, “shocking” evidence (with respect to her model) that pushes her back toward uncertainty.

The rationale stems from the “variance effect” discussed in Section 3.2. Since right types
overestimate their frequency, λ̂r > λ, and consequently underestimate variance in tastes, they think
actions reveal more private information than they do. In particular, when a right type observes a
“contrarian” action—one that deviates from the most likely choice—she overweights the possibility
that it’s due to a player who shares her taste but has strong information contrary to the current public
opinion.45 Importantly, contrarian actions are overattributed to private information rather than taste.

45In this setting, a contrarian action is defined relative to an individual’s belief: action Xnt is contrarian if it’s the
action least likely observed according to an observer with belief `θt .
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To see this in terms of the investment example, suppose traders initially believeA is safe: `θt ≈ 0
for each θ. At first, they observe a market share for A equal to λ, the share of risk-averse traders.
A risk-averse investor, however, expects a share near λ̂r > λ and thus observes roughly λ̂r − λ

more contrarian choices (in frequency) than anticipated. She must form a theory explaining this
excess demand for B. Within her model, the most likely scenario is that a significant share of
fellow risk-averse investors received strong private information that B is in fact safer. From this,
the risk-averse trader concludes that society was likely misled when it previously decided that A is
safer than B.

This logic implies that when both types have beliefs near the truth, the belief of the majority type
`rt evolves as a submartingale. That is, `rt drifts away from zero toward less confident beliefs. On
the other hand, a left type observes more A’s, and thus fewer contrarian actions, than anticipated.
This reinforces her belief in ω = R. Locally, `lt is a supermartingale—left-type beliefs move toward
zero in expectation.

Lemma 8. Assume weak taste projection. There exists a neighborhood N about the truth ˆ̀ =
(0, 0) such that for all (`lt, `rt ) ∈ N , E[`rt+1 | `lt, `rt ] > `rt and E[`lt+1 | `lt, `rt ] < `lt.

Lemma 8 confirms that the two types’ beliefs move in opposite directions when both are initially
quite certain of the state, but how do these dynamics play out in the long run? Like `rt , `

l
t must

eventually move away from 0. Suppose instead that `lt remained near 0 for all t. Since (1) `rt is a
submartingale conditional on `lt = 0 and (2) the only fixed points of 〈`rt 〉 are 0 and∞, it must be
that `rt must diverge to infinity. Hence, the frequency of action B converges to 1. But a left type
is aware she is in the minority; an arbitrarily long herd on B must eventually cause her to think
ω = L. This logic makes clear that while right-type beliefs move from favoring ω = R to ω = L,
their resulting behavior compels left types to similarly revise their beliefs. But once all agree that
ω = L, the above logic repeats: right-type beliefs drift back toward uncertainty. No matter which
state society agrees on, no action ever gains as much support as the majority anticipates. As a
result, the majority never grows confident of their optimal action.

Figure 4 depicts this logic by plotting the expected drift in biased beliefs for all regions of the
joint-belief space. Beliefs drift away from each fixed point and do so in a particular way: behavior
near each potential equilibrium reinforces the beliefs of some types, but deteriorates the confidence
of others.
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Figure 4: Direction of drift at each point in the joint-belief space assuming “weak” taste projection.

Weak projection generates persistent opinion fluctuations where society alternates between sup-
porting ω = R—where most people choose A—and supporting ω = L—where most choose B.
As such, behavior resembles “fads”. Although common, such behavior is not well explained by
rational learning models in settings with strongly connected networks or “unbounded” private in-
formation. For example, fad-like behavior arises in Çelen and Kariv (2004) only if rational players
both observe a subset of predecessors and receive boundedly-informative private signals. Ace-
moglu, Como, Fagnani and Ozdaglar (2012) suggest a naive model of learning in a network where
some agents are “stubborn” and never update their beliefs. Acemoglu, et al. (2012) suggest that
such models help explain persistent fluctuations in political opinion, documented by Kramer (1971)
and Cohen (2003). In my model, the public is surprised how little support a policy receives, ratio-
nalizing that if the policy was in fact optimal for the majority, it would garner more support. But
when society changes its mind, the alternative policy also fails to earn sufficient support. People
perpetually mistake the “surprising” amount of heterogeneity in choice for revelation of new private
information.

Weak projection harms social welfare whenever beliefs spend a significant proportion of time
below 1/2. To determine when this occurs, we must study the long-run distribution of beliefs,
which depends on the relative magnitudes of the mispredictions, λ̂l and λ̂r. Near ˆ̀ = (0, 0),
λ̂r dictates how quickly `rt moves away from 0, while λ̂l dictates how quickly `lt moves toward

0. A particularly interesting case arises when λ̂r is sufficiently close to λ. Specifically, when
λ̂r ∈ (λ, λ̄r) where λ̄r := 1 −

(
1−λ
λ

)
λ̂l, simulations confirm that each belief process oscillates

between increasingly confident beliefs in the two states. Figure 5 depicts a simulated sample path
of log `θt in this case. When society is confident that ω = R, all choose optimally—fraction λ, all
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right types, take A. But when confident that ω = L, all choose incorrectly—fraction 1 − λ, all
left types, take A. Figure 6 displays these swings in behavior: the frequency of choice A oscillates
between λ and 1− λ.

When society has such “cyclical beliefs”, expected welfare is lower than if people simply ig-
nored others’ actions. Roughly 50% of the time, a player forms nearly confident, but false, beliefs.
But when relying solely on private infromation, agents necessarily choose correctly more than 50%
of the time. Observing others makes society worse off, on average.
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Figure 5: Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.8.
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4.5 Biased Learning Under General Taste Projection

This section characterizes learning outcomes when misperceptions may differ across an arbitrary
finite number of types. The previous two sections assumed “choice-dependent” projection, which
imposed that all players on a particular side of the taste spectrum share a common perception of
λ. The only assumption on perceptions I make here is Assumption 1, so λ̂(θ) is monotonically
increasing in θ.

Proposition 8 provides necessary and sufficient conditions on perceptions for the existence of
stable equilibria. Let W denote the share of types who wrongly think left types comprise the
majority. Let θ̃ := arg maxθ λ̂(θ) subject to λ̂(θ) < 1/2 denote the right-most type who believes
left types comprise the majority. If θ̃ exists, then W = G(θ̃); otherwise W = 0. Let θ = min Θ
and θ = max Θ.

Proposition 8. A stable equilibrium exists if and only if

1. θ̃ < 0 and W + λ > max
{

1− λ̂(θ), λ̂(θ)
}

2. θ̃ > 0 and 2− (W + λ) > max
{

1− λ̂(θ), λ̂(θ)
}

The left-hand side in each inequality of Proposition 8 is the measure of agents who believe it
is optimal to follow the majority action. The right-hand side is the most biased perception of the
size of the majority. So long as all agents observe more people than they anticipated choosing a
single action, then the equilibrium is stable. In any stable equilibrium, it is always the extreme
types (those far from indifferent) who (rightly or wrongly) follow the majority action. They are
the types who most overestimate how many share their taste. Interestingly, it’s those with the most
opposed tastes who choose identically. In contrast, it’s those with weak preference over location
who concede that they have less-common preferences and choose the minority action. Turning to
equilibrium beliefs, θ̃ represents a turning point in beliefs: all types to one side of θ̃ agree on the
state, while those on opposite sides disagree.

Proposition 8 generalizes the findings of “strong” and “weak” projection to a broad class of
taste-dependent perceptions, λ̂. Strong projection implies all agents choose identically. Here, rela-
tive to the efficient outcome, any stable equilibrium requires that too many agents adopt the popular
action. “Over-adoption” of the majority choice is a general implication of a stable projection equi-
librium, and strong projection demonstrates a particular limit case in which all choose a single
action. Additionally, so long as each type correctly recognizes the majority preference, λ̂(θ) > 1

2

for all θ ∈ Θ, then results match those of the weak-projection case: there exist no stable equilib-
rium beliefs. As such, the two-type examples in Sections 4.3 and 4.4 accurately capture the essence
of learning with projection, albeit in extreme fashion.
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5 Learning About Quality

In many settings, beliefs about commonly-valued quality may be a greater determinant of choice
than perceptions of horizontal location. For instance, imagine learning about candidates in a pri-
mary election. Early poll results reveal information about both a candidate’s ideology and her
competence. If a voter infers a large difference in competence between two candidates, she may
choose to support the more competent one even if he is farther from the voter’s preferred ideology.
In this section, I consider such settings where quality differences may be large enough so that all
players prefer the same option despite heterogeneity in tastes. How does taste projection distort
inference about quality?

I explore two ways in which taste projectors misjudge relative quality. With two types, if peo-
ple display strong projection, then society necessarily comes to believe that the quality difference
between A and B is as large as possible. Such mislearning both arises from and perpetuates a herd
in which all players choose the option optimal for the majority taste. With a continuum of types,
stable long-run behavior implies a negative relationship between tastes and perceived quality: peo-
ple who most prefer the horizontal attributes of A underestimate the quality of A relative to those
who prefer the horizontal attributes of B.

5.1 Preliminaries

States. Players wish to learn both (1) the location ζ ∈ {L,R}, and (2) the quality difference
∆q ∈ D of A relative to B. (ζ,∆q) ∈ {L,R} × D. Let ∆ := minD and ∆ := maxD. Since
u(qX , zX) = qX − k(zX − θ)2, all agents prefer A over B if ∆q > ∆̂ := 4kθ, where θ = max Θ;
all prefer B if ∆q < −∆̂. I call state ω = (ζ,∆q) universal whenever |∆q| > |∆̂| so all prefer
the same action. Assume universal states are possible: ∆ > ∆̂ and ∆ < −∆̂. Players expect to
observe long-run uniform behavior if and only if ω is universal.

Private Information. For simplicity, I assume a unidimensional signal structure in which each
player receives a signal informing them her action is optimal for her own taste. For each θ, let
Ωθ ⊂ Ω denote the set of states in which type θ weakly prefers action A. Each type-θ player
receives an i.i.d. private belief that ω ∈ Ωθ drawn according to c.d.f. FA if ω ∈ Ωθ or c.d.f.
FB otherwise. FA and FB meet the same assumptions as FH and FL, respectively (Assumptions 3
and 4). While private information alone leads to coarse inference over Ω, the signal structure allows
agents to discern which action is optimal for each type when observing others. I assume this signal
structure, which implies that agents follow decision rules analogous to those derived in Section 3,
only for ease of exposition. The structure still allows rational agents to learn the optimal action,
and I emphasize below that it does not drive any of the incorrect-learning results.
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5.2 Quality Distortions with Two Types

In this section, I show that if two types suffer strong projection, then society necessarily comes to
believe in a universal state. Thus, differences in vertical quality are always weakly exaggerated.

Suppose there are two types—a left type (θ = −1) and a right type (θ = 1). λ := Pr(θnt = 1)
denotes the fraction of players with right-leaning tastes.46 With two types, observing a history
generates public beliefs over a partition of Ω comprised of four elemnts. Essentially, players can
only determine which action is optimal for each type. Hence, each partition element—denoted
ΩXX′ for X,X ′ ∈ {A,B}—contains all states in which it is optimal for left types to chose X
and right types to choose X ′. Let πθt (XX ′) denote type θ’s belief that the state is in ΩXX′ after
observing history ht.

The following proposition characterizes long-run beliefs, and demonstrates that left and right
types never agree on the location state, but always agree that one action has superior quality.

Proposition 9. Under strong taste projection, the following are true:

1. Any joint belief with πr(AB) = πl(AB) = 1 or πr(BA) = πl(BA) = 1 is unstable. Hence,

agents never agree on the location state in the long run.

2. Suppose the number of players per period is arbitrarily large, N → ∞, and agents observe

only those in the previous period. If in truth ω ∈ ΩBA ∪ ΩAA, then for each θ, πθt (AA)→ 1.

Otherwise, πθt (BB) → 1 for each θ. Agents necessarily conclude that the quality difference

is large enough so that all players prefer the same action.

Part 1 of Proposition 9 follows from the stability criteria established in Proposition 4. The
logic is identical to learning under strong taste projection absent quality differences (Section 4.3).
That is, agents never agree on the location state, and instead form fully-polarized beliefs over ζ .
Whenever the majority chooses A, left types come to believe ζ = L, while right types conclude
ζ = R. As usual, all agents believe A is optimal, and a uniform herd on A results.

Part 2 of Proposition 9 is a consequence of how agents explain this uniform herd. Since quality
differences might be large, agents have a perfectly good explanation: if all chooseA, it must simply
be that A has high quality, ∆q > ∆̂. The observation structure, where the number of agents each
period is infinite but players observe only the behavior of the previous generation, implies that belief
dynamics are deterministic, and is assumed merely to make precise claims about limit beliefs.

Under strong projection, payoff differences along the quality dimension are always perceived as
greater than those along the idiosyncratic “horizontal” dimension. This misperception has impor-
tant consequences in markets for niche goods that are appealing only to a minority of consumers. In

46For continuity with previous sections, I use the superscript l to denote perceptions held by θ = −1 and r for those
of θ = 1.
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such cases, low demand over attributed to poor quality, rather than limited appeal. Thus, even those
who would enjoy the good assume it’s not worthwhile.47 Further, this is independent of priors:
even if a universal state is very unlikely, people still conclude one option has such a large quality
advantage that all should choose it irrespective of taste.

This result adds a new perspective to puzzles surrounding the slow adoption of useful agricul-
tural practices. Consider a setting where farmers learn whether to adopt a new strain of hybrid
rice (A) or use the status-quo crop (B). Hybrid rice grows well only in specific types of soil; for
instance, some strains require either high or low salinity (Munshi, 2003). Suppose in truth this seed
is only worthwhile for low-salinty farms, which comprise 40% of the region. But farmers don’t
know this: they learn about the optimal soil by observing how many others have adopted. Nor do
they know the potential yield of the new seed. It’s conceivable that even when sowed in suboptimal
soil, the hybrid may trump the alternative. Before investing in the new crop, farmers cultivate a
small test plot—they have noisy signals about the match between the seed and their farm. Initial
adoption is based on this private information. In t = 2, additionally use the fraction of neighbors
that previously adopted, say roughly 40%. If both low- and high-salinity farms perceive themselves
as the majority, then both types find the initial demand too weak to adopt. The next period, new
farmers learn that none of those from the previous generation adopted the new seed. The only
reasonable conclusion is that the yield is inferior to the status quo, irrespective of variation across
farms. They’ve concluded that the new technology is globally, rather than selectively, ineffective.

5.3 Quality Distortions with Many Types

With many types, there may exist long-run stable equilibria in which those with different tastes
choose different options. In such cases, agents hold correct beliefs along the horizontal dimension,
but display an interesting form of mislearning along the quality dimension. Instead of universally
concluding one action has superior quality, perceptions of quality are negatively correlated with
tastes. Specifically, if people are confident that action A best suits right-leaning tastes (ζ = R),
then, relative to left types, right types conclude A has low quality. Those with innate taste for an
option develop a relatively pessimistic view of its quality. This section, like those before, reiterates
an implication of projection: people must disagree on some dimension in order to explain observed
behavior. If they agree on quality, then they must disagree on location, and vice versa.

There is a simple logic for why projection induces negative correlation between quality percep-
tion and taste. Suppose agents wish to learn the future health benefits of exercise. People vary in
how pleasurable—or painful—they find exercise, but each person knows their own idiosyncratic
taste. Upon observing how many others regularly attend the gym, exercise fans—who overestimate

47An older literature in industrial organization attempts to explain how social learning may deteriorate the market
share of niche goods. See McFadden and Train (1996).
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the share with similar taste—find attendance lower than expected. They attribute this in part to its
health benefit, and conclude these benefits must be limited. Those who find the gym particularly
unpleasant draw precisely the opposite conclusion. They see more than expected attending the
gym—they think most find exercising a painful endeavor—and thus infer that the health benefits
must be high.

To show this result formally in the domain of choice-dependent projection with a continuum
of types, Θ = [θ, θ]. Suppose θ < 0 think θ ∼ Ĝl and θ > 0 think θ ∼ Ĝr; Ĝr dominates Ĝl in
the sense of FOSD. I also assume the number of players each period is large so that the fraction
choosing A each round, denoted αt = at/N , is a deterministic function of beliefs and the state.
While I assume just two distinct perceptions of G for simplicity, it will be clear how the logic of
the equilibria discussed here extends to the case where each type may hold a distinct perception.

Suppose that in the long-run, a fraction α of players chooseA. When agents face no uncertainty
over location—they know ζ = R—how does each type rationalize α? Given their differing beliefs
about how many have right-leaning tastes, different types must form conflicting theories of ∆q.
Denote by ∆l

q and ∆r
q the perceived quality differences of left and right types, respectively. All

players correctly understand that the marginal type—the type indifferent between A and B—is
θ̂ = −∆q/4k and that those who choose A have θ ≥ θ̂. People simply use the wrong model when
deciding how many players have taste θ > θ̂. Letting θ̂l and θ̂r denote each type’s perception of θ̂,
equilibrium requires α = 1 − Ĝl(θ̂l) and α = 1 − Ĝr(θ̂r). Thus left and right types respectively
conclude ∆l

q = −4kĜ−1
l (1− α) and ∆r

q = −4kĜ−1
r (1− α). Since Ĝr(x) ≤ Ĝl(x), it follows that

∆r
q ≤ ∆l

q.

Proposition 10. Suppose a continuum of types suffer choice-dependent projection. If agents agree

that A is optimal for right-leaning tastes (ζ = R), then right-leaning agents have a lower percep-

tion of A’s quality than do left-leaning agents: ∆r
q ≤ ∆l

q.

In general, with perceptions that can vary for each θ, the equilibrium requirement is α = 1 −
Ĝ(θ̂(θ)|θ) for all θ, where Ĝ(·|θ) is a type θ’s perceived distribution and θ̂(θ) is her perception of
the marginal agent. This condition does not necessarily hold—existence requires the speed at which
Ĝ(·|θ) varies across θ to be small.48 However, in any such equilibrium, it’s clear that the perceived
quality advantage of A is decreasing in type. To see this, let ∆q(θ) denote type θ’s perception of
∆q. α = 1− Ĝ(θ̂(θ)|θ) implies θ̂ = Ĝ−1(1− α|θ), and using θ̂ = −∆q(θ)/4k yields

∆q(θ) = −4kĜ−1(1− α|θ). (13)

By first-order stochastic dominance (Assumption 1), Ĝ−1(1 − α|θ) is increasing in θ, and thus
∆q(θ) is decreasing in θ.

48Specifically, a sufficient condition is that −Ĝ−1(1− α|θ) + θ is increasing, hence ∂
∂θ Ĝ

−1(1− α|θ) < 1, on Θ.
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6 Learning About Preferences

This section explores learning about horizontal differentiation, as in Sections 3 and 4, among agents
who revise their models of others’ preferences after observing actions. Until now, I assumed agents
have fixed perceptions: they believe the distribution of tastes (which they mispredict) is perfectly
known by all agents.49 This section considers a more realistic model where all agents perceive
some uncertainty over the distribution and learn about others’ tastes through their actions. If the
true taste distribution lies in the support, will updating their models ameliorate agents’ mislearning
of payoffs? If agents are naive—they neglect that different types start at different priors—then the
answer is no.

Specifically, I assume agents with different tastes rationally form divergent priors over the
distribution. But a naive agent errs by assuming all share her prior. She thus develops incorrect
beliefs about what other types infer. This demonstrates that it’s not heterogeneous priors, per se,
that lead agents astray, but rather their neglect of others’ discrepant beliefs. I show that a particular
class of priors can cause agents to become fully biased in their perceptions of others tastes. That is,
each wrongly concludes that all players share her preference.

Subsection 6.1 extends the model and defines taste projection in a setting with uncertainty.
For the sake of demonstrating how naivete can generate incorrect learning even when agents put
positive weight on the true environment, I consider the most simple variant of the model. Within
this setting, Subsection 6.2 explores properties of biased long-run learning.

6.1 Uncertainty Over the Taste Distribution

Consider the model of Section 3 and 4 with no uncertainty over quality. Suppose there are two
types—a left type (θ = −1) and a right type (θ = 1).50 λ := Pr(θnt = 1) denotes the fraction
of players with right-leaning tastes. Learning the taste distribution entails estimating then single
parameter, λ.

Public and Private Beliefs. Suppose that λ is a random draw from distribution µ0 on Λ =
{λ1, λ2, ..., λK} with λ = min Λ and λ = max Λ. The state space is {L,R} × Λ, consisting of
payoff states, ω ∈ {L,R}, and distribution states, λk. Denote by πθt (ω, λk) a θ type’s public belief
that the state is (ω, λk) upon observing ht. Without loss of generality, suppose the state is (R, λ∗)
for some λ∗ ∈ Λ. Finally, let the conditional distributions of private beliefs Fω meet Assumptions 3
and 4 from Section 3.

Priors. Assume Pr(ω = R) = 1/2, and let µ0 ∈ ∆(Λ) denote the prior over λ. Since one’s

49While this sounds dogmatic, this assumption forms the premise of many Bayesian games, including the canonical
model of Smith and Sørensen (2000).

50For continuity with previous sections, I use the superscript l for θ = −1 and r for θ = 1.
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taste is information about λ, each type updates µ0 using θ according to Bayes’ rule. Let µθ denote
each types’ revised “type-dependent” prior.51 I model taste projection as a biased perception of
revised priors over λ. As before, I assume agents are naive in that they neglect that players with
differing taste have different priors. A θ type thinks all players share her prior µθ regardless of their
tastes.52 This is the only way in which a θ-type’s model is misspecified: she has a perfectly rational
theory of how λ is distributed, but an incorrect theory of what others think.

Assuming naivete—that each thinks others’ priors exactly match her own—is admittedly strong.53

It is, however, stronger than necessary, and I assume this only because the error is particularly sim-
ple. The results below essentially rely on players (unknowingly) inferring too much, relative to
a Bayesian, from their own tastes. Hence, they underappreciate the extent to which priors differ
across types. I examine the extreme case in which players think priors don’t differ at all.

Decision Making and Updating. While beliefs about λ dictate the interpretation of actions, an
individual’s decision relies solely on her belief about ω.54 Denote this belief, the marginal probabil-
ity of ω = R, by πθt := ∑

k π
θ
t (R, λk). Since a naive agent thinks all share her prior, she assumes all

types share her public belief πθt (ω, λk) in each state, for all ht. The key difference between rational
and naive updating is that a rational player has correct second-order beliefs. Hence, she knows that
left and right types have different public beliefs.

6.2 Biased Long-Run Learning

This section shows that naivete—incorrect second-order beliefs about λ—can generate polarized
beliefs about ω and λ. For some priors, agents disagree on the interpretation of actions, causing left
types to grow confident that ω = L while right types grow certain that ω = R. With polarized be-
liefs about payoffs, all players take the same action. In explaining this herd, agents’ perceptions of
others’ tastes also polarize: each thinks the herd indicates that her taste is most common. I provide
sufficient conditions on priors guaranteeing that such outcomes occur with positive probability.

Before turning to formal results, I first provide some intuition. Uniform herding can occur
whenever a herd on an action, say A, is forever “polarizing” This means that left and right types
always (unknowingly) disagree on the interpretation of A no matter how often it is played. Hence,
the herd on A leads left and right types to believe ω = L and ω = R, respectively. To check

51Specifically, for θ and λk, µθ(λk) = Pr(λk | θ). So, µr(λk) = λkµ0(λk)/
∑
i λiµ0(λi) = λkµ0(λk)/E[λ] and

µl(λk) = (1− λk)µ0(λk)/
∑
i(1− λi)µ0(λi) = (1− λk)µ0(λk)/(1− E[λ]).

52This assumption is similar to Madarasz’s (2012) model of “information projection”. A θ type forms beliefs as if
her taste “signal” was publicly observed by all agents. But she also projects ignorance: she neglects that other agents
may receive contradictory information.

53This notion of naivete is consistent with the earlier definition (Assumption 2). A more general definition of naivete
that extends to settings with uncertainty is that all players think each agent shares her prior over the taste distribution.
Then Assumption 2 follows from this definition in settings with no uncertainty.

54Agents follow the same decision rule as in Section 3 (Lemma 1).
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whether this is possible within a given environment, first suppose people act in single file and let
πθt (hAt ) be type θ’s belief that ω = R entering period t following history hAt , where hAt is a history
of length t − 1 consisting of all A’s. Then fully-polarized beliefs may occur if for all t ∈ N,
πrt+1(A, hAt ) > πrt (hAt ) and πlt+1(A, hAt ) < πlt(hAt ). That is, each types’ beliefs are monotonic in
hAt .

Rational beliefs, of course, never satisfy this condition. However, they may be polarized by
finite sequences of A’s. To see this, consider an investment setting where the fraction of risk-averse
agents is λ ∈ Λ = {1

4 ,
3
4} with prior µ0(3/4) = 0.6. After using their own risk preference as

information, risk-averse and risk neutral agents respectively think µr(3/4) ≈ 0.82 and µl(3/4) =
1/3. Hence, initially, each type rationally believes her taste is most common. If the first investor
choosesA, each agent reasons that the investor likely shared her taste. And so a rational risk-neutral
agent infers A is likely risky, whereas the risk-averse infer A is likely safe. Action A temporarily
polarizes beliefs.

But so long as agents are rational, A cannot forever polarize beliefs. Since agents have correct
second-order beliefs, they know exactly what people of opposite tastes infer actions. A rational
player cannot grow confident of some hypothesis while fully aware that another rational agent
is confident of an alternative hypothesis.55 In the example above, observing a second A reveals
little information—all know that each type likely chooses A irrespective of their private signal. As
such, after a long enough sequence of A’s, people eventually rely on the original prior µ0 to draw
conclusions instead of their taste dependent prior. All people eventually agree that a long sequence
of A’s is strong evidence for (R, 3/4).

Naive agents aren’t so clever. In the example above, naive players neglect that the first A sends
beliefs in opposite directions. Hence, upon observing a second A, observers fail to limit their
inference. Instead of understanding that each type is inclined to pick A in t = 2, a naive risk-averse
agent overestimates the likelihood that the second A results from a fellow risk-averse agent with
private information thatA is safe. This over-inference from relatively uninformative behavior sends
naive beliefs of each types toward opposite extremes.

In general, if actions can have a lasting polarizing effect, then with positive probability agents
with different tastes converge to confident beliefs in opposite payoff states and a herd results. This
happens on sample paths that begin with a long sequence of A’s. From this “initial condition” in
which people unknowingly disagree on the state, most continue to choose A—risk neutral grow
confident A is risky and most are risk neutral all thew while the risk averse are confident it’s safe
and that they comprise the majority preference. I show that these polar-opposite beliefs are stable:
they lead all agents to play A with high probability, which only strengthens players’ beliefs. Thus,

55Although Acemoglu, Chernozhukov, and Yildiz (2007, 2009) show that rational agents may “agree to disagree”
on the interpretation of an infinite sequence of evidence, players in their model never fully disagree on the state.
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so long as people can reach a neighborhood of the polar-opposite beliefs, then they may forever
remain at there.

6.2.1 Two-Point Taste Distributions

I first demonstrate mislearning in the simple case where, like the example above, λ takes one of
two values. Suppose Λ = {λ, λ} with λ < λ. The following lemma establishes what a naive player
comes to believe after observing an arbitrarily long herd on A as a function of her prior. In this
setting with |Λ| = 2, let µθ denote type θ’s perceived probability that λ = λ.

Lemma 9. Suppose Λ = {λ, λ}. For any λ < 1
2 < λ, there exists a value µ̂(λ, λ) ∈ (0, 1) such

that µθ < µ̂(λ, λ) implies limt→∞ π
θ
t (hAt ) = 0 and µθ > µ̂(λ, λ) implies limt→∞ π

θ
t (hAt ) = 1.

Lemma 9 implies that if agents are initially sufficiently confident that λ = λ, then a herd on A
indicates (R, λ). But if µθ is low, the herd indicates (L, λ). Hence, whenever agents have priors
that fall on opposite sides of µ̂(λ, λ), the two types disagree on the interpretation of an arbitrarily
long herd. However, if λ > 1/2 or λ < 1/2, so that both λ and λ lie on the same side of 1/2, then
the two types always agree on the interpretation of a herd.

Proposition 11. Suppose λ < 1
2 < λ and µl < µ̂(λ, λ) < µr. With positive probability, πrt (R, λ)→

1 and πlt(L, λ)→ 1.

Agents grow fully polarized along both dimensions on which they learn: they disagree on the payoff
state, and each type of agent thinks most share her taste. In the next subsection, I explain how this
logic extends to more general distributions of λ, and discuss the intuition and significance of these
results.

6.2.2 General Taste Distributions

I now discuss informally how this logic should extend to settings with Λ = [0, 1]. Suppose type-
dependent priors µl and µr are respectively strictly decreasing and increasing on Λ.56 If the number
of players each round is arbitrarily large, N → ∞, then πrt (R, λ) → 1 and πlt(L, λ) → 1. Actions
converge on option A.

To provide intuition, suppose the truth is (R, λ∗) with λ∗ > 1
2 . First period actions a1 collapse

beliefs onto the truth and (L, λ′) for some λ′ < 1
2 . Type-r believes (R, λ∗) is most likely, and

type-l believes (L, λ′) is most likely. In period 2, net of private information, each type believes
A is optimal. And, since agents thinks their beliefs are commonly shared, each expects a player
with taste different than her own to choose B. Agents neglect the fact that all have incentive to

56This is true, for instance, when λ is drawn from a uniform prior on [0, 1].
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choose A. Thus, a2 exceeds what any player expects to see in either state. Given monotonic priors,
the most likely explanation for this unexpectedly-high outcome within a right-type’s model is that
λ > λ∗. Within a left-type’s model, the most likely explanation is λ < λ′. That is, a2 polarizes the
agent’s beliefs about λ: a right type’s estimate moves toward 1, while a left-type’s estimate moves
toward 0. Increased polarization implies still more choose A in round 3—a3 > a2, and polarization
increases further. In general, at+1 > at for all t, and at/N → 1. In the long-run, all choose A.
Type-r thinks (ω, λ) = (R, 1) and type-l believes in (ω, λ) = (L, 0).

With uncertainty over tastes, players explain a herd by assuming common preferences. We saw
a similar logic in Section 5, where players explained an otherwise anomalous herd by inferring that
one option had high relative quality. Essentially, people use alternative dimensions of uncertainty to
explain the seemingly unusual behavior that results from projection. So long as players’ models are
able to explain herds—whether it’s a theory of common tastes or large quality differences—their
erroneous beliefs are essentially self confirming: agent’s incorrect theories perpetuate the herd, and
thus never generate evidence inconsistent with their false beliefs.

It’s worth emphasizing that naive learning can exacerbate biased perceptions of others’ tastes.
In both cases studied above, beliefs about the average taste grow polarized across types. Agents
move from a seemingly mild error—they assume others share their uncertain beliefs about λ—to
a growing confident that most share their taste. In this sense, naive learning can generate a strong
taste projection, where each type thinks their own preference is most common. Even though agents
in this model have precisely correct theories of the world aside from mispredicting others’ priors,
the fact that they ignore heterogeneity in beliefs when learning can potentially lead them far from
the truth.

7 Conclusion

7.1 Relation to Previous Research

This paper contributes to a growing literature studying how informational biases can lead to the
persistence of false or divergent beliefs.57 Ellison and Fudenberg (1993), who were among the first
to study biased social learning among agents with heterogeneous tastes, explore the efficiency of
“rule-of-thumb” learning in a setting with observable payoffs. In their model, agents with hetero-
geneous tastes simply choose whichever action performed best among those observed. This naive

57One strand of this literature studies the consequences of probabilistic errors—such as over-inferring from small
samples (Rabin, 2002; Rabin and Vayanos 2010) or under-appreciating properties of statistical processes (Barberis,
Shleifer, and Vishny, 1998). A distinct strand studies agents who neglect the informational content of others’ behavior,
providing explanations for the winner’s curse and excessive trading in asset markets (e.g., Eyster and Rabin, 2005;
Eyster, Rabin and Vayanos, 2013). Taste projection at its root is a probabilistic error, but since it leads to inaccurate
perceptions of others’ information, taste projectors additionally misinfer from others’ behavior.
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learning rule is akin to projection where each player thinks all share her taste. Similarly, they show
that their rule never leads to exact long-run efficiency, but efficiency improves as tastes become less
heterogeneous.

Bohren (2014) studies a variant of the canonical model from Bikhchandani et al. (1992) where
only a fraction of players observe the history and players mispredict this fraction. As with taste
projection, various degrees of misprediction can lead to both stable, incorrect herds or persistent
fluctuations in beliefs. Bohren’s focus, however, is on a commonly-held misprediction, while I
emphasize the interaction of misperceptions that differ across types of agents. Furthermore, the
inferential error studied by Bohren (2014) has a much different motivation, as it captures play-
ers’ ignorance of the redundancy in social behavior. This form of redundancy neglect has been
studied elsewhere in the literature, namely by DeMarzo, Vayanos and Zwiebel (2003), Eyster and
Rabin (2010, 2013) and Gagnon-Bartsch and Rabin (2014). These papers also show how biased
observational learning generates confident, yet false, beliefs.

Finally, taste projection is closely related to information projection, explored in Madarasz
(2012). That model assumes agents overestimate the likelihood that others have the same pri-
vate information as themselves. Madarasz explores the implications of this error in a variety of
principal-agent problems.

From a broader perspective, this paper studies learning among agents with both non-common
priors and inconsistent beliefs about others’ priors. While a large literature studies the implications
of non-common priors—most notably as explanations for speculative trade (e.g., Harrison and
Kreps, 1978; and Morris, 1996)—warranted caution on modeling non-common priors has been
advised. As subjective heterogeneous priors can justify nearly any outcome ex post, Morris (1995)
argues that we should allow non-common priors only when we can identify a source for the dis-
agreement and precisely model these differences. This paper proposes a disciplined way of incor-
porating non-common priors: an agent’s own taste systematically dictates her beliefs about others’
tastes.58 Further, the literature on non-common priors typically assumes that agents have correct
beliefs about the distribution of these priors—people simply “agree to disagree.” My key departure
from this literature is that I instead characterize learning among people who neglect disagreement
and who thus wrongly believe in a commonly-shared interpretation of public information.

7.2 Discussion

Throughout this paper, I highlight how one’s interpretation of others’ behavior depends on the lens
through which it is viewed—those with differing perceptions of tastes develop inconsistent beliefs
about the state of the world. In many cases, this discrepancy in beliefs can lead behavior far from

58Models of overconfidence (e.g., Scheinkman and Xiong, 2003), where individuals disagree on the information
content of particular signals, are similar attempts to incorporate non-common priors in a structured fashion.
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the optimum. Furthermore, these results help explain three important phenomenon inconsistent
with rational learning models. First, taste projection offers an explanation for why uniform behav-
ior may arise despite diverse preferences. Second, it shows how society can develop and maintain
confident but false beliefs despite observing an arbitrarily large sample of privately-informed be-
havior. Third, false-consensus errors can arise from naive learning: when people ignore differences
in prior beliefs, otherwise rational learning leads agents to think their own taste is most common.

While the formal model focuses exclusively on observational learning, taste projection has im-
portant consequences in other natural social-learning environments as well. For instance, consider
agents who directly share their experiences. In word-of-mouth learning (e.g., Banerjee and Fu-
denberg, 2004) or learning from online reviews—where players observe the actions and payoffs

of predecessors—projection still leads learning astray. To see this, suppose restaurant Y gener-
ates stochastic outcomes y, which provide type θ with utility u(y, θ), and an observer sees a large
collection of payoffs from a random sample of the population. With correct knowledge of the
distribution of θ, a rational observer infers the distribution of Y from the sample of payoffs. But a
taste projector, who has wrong beliefs about the distribution of θ, develops a distorted perception of
the underlying distribution of outcomes, Y . For instance, if some unsophisticated diners earn high
payoffs from average-quality meals, then those who enjoy only exceptional meals will be mislead
by the shining reviews of those with limited taste, and vice versa.

More broadly, a novel feature of this paper is the assumption that agents within non-common-
prior environments neglect heterogeneity in beliefs. Of course, this paper focuses on the very spe-
cific case of social learning, but it naturally provokes curiosity about how similar forms of naivete
alter the results of well-known non-common-prior models like Harrison and Kreps (1978), Morris
(1996), and Scheinkman and Xiong (2003). What do speculative traders come to believe about
returns when they neglect disagreement? Beyond taste projection, there are other reasons to ex-
pect disagreement neglect. For example, Malmendier and Nagel (2011) find that market conditions
experienced early in life shape investors expectations about stock-market returns. It seems natural
that an investor may under-appreciate the influence of her own experience on perceptions, and thus
conclude that investors from different generations share her perceptions. How do conflicting ex-
pectations interact in the market and shape the perceptions of the current young generation? How
will this naive learning process play out in the long run? These questions are left open for future
research.
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A Smith and Sørensen’s Confounded Learning

Consider the model of Sections 3 and 4 where ∆q is known. This section demonstrates that con-
founding beliefs only exist when |∆q| is sufficiently large, and show how their existence changes
the basic results derived in above. Smith and Sørensen (2000) show that in this setting, observa-
tional learning with heterogeneous preferences may lead to “confounded learning”. With rational
agents, there may exist an interior steady-state belief, π̂, such that if public beliefs reach this value,
then learning stops. Beliefs remain at π̂. The steady state is such that the probability of any ob-
servation a is equal in both states R and L. Observing a when public beliefs are at the steady
state reveals no new information. In terms of updating process defined above, π̂ is the value that
satisfies ψ(a | ˆ̀, R) = ψ(a | ˆ̀, L) where ˆ̀ = (1 − π̂)/π̂. Smith and Sørensen (2000) show that
under rational play, if such a confounding belief exists, long-run beliefs converge to this value with
positive probability.

Lemma A.1. Let θ̄l = maxθ Θl. Then no confounding beliefs exist if

∆q < k∆d(θ
l)(1− ξθ)/(1 + ξθ),

where

ξθ := min


√√√√∑

θ′∈Θl ĝ(θ′|θ)∑
θ′∈Θr ĝ(θ′|θ) ,

√√√√∑θ′∈Θr ĝ(θ′|θ)∑
θ′∈Θl ĝ(θ′|θ)

 < 1.

B Rational Learning with Preference Uncertainty

This section characterizes long-run learning among rational agents with taste-dependent distribu-
tional beliefs, which arise from uncertainty over the taste distribution (as in Section 6). For in-
stance, investors are uncertain if others are primarily risk averse or risk neutral, so an agent’s own
preference is information.

47



Rational learning contrasts sharply with learning under naive projection. Namely, rational be-
liefs always converge, and people with different tastes never reach fully-polarized beliefs—they
never grow confident in different states. The various failures in learning that arise with naive
projection—incorrect learning, fully-polarized beliefs, and perpetually fluctuating beliefs—are thus
not a sole consequence of taste-dependent distributional beliefs. Rather, they result from ignorance

regarding others’ taste-dependent beliefs—from thinking others’ think like oneself.
However, rational learning in this setting is not complete. Depending on the sample path,

rational agents either fully learn or converge to an interior fixed point. Disagreement may exist in a
long-run equilibrium, but in such cases, society remains uncertain: two agents with different tastes
never grow confident in two distinct hypotheses. Interestingly, when there is uncertainty over the
type distribution, confounded learning always arises with positive probability. This contrasts the
standard Smith and Sørensen (2000) model, where it arises only if quality differences, |∆q|, are
sufficiently large.

I consider a model identical to that in Section 6, but with the following exception: agents are
fully-rational, so second-order beliefs are correct. Essentially, each player knows precisely the
priors of all others. Despite this, rational learning may still fail in an important way. In particular,
confounding beliefs exist for any quality difference ∆q. Let πθt = ∑

k π
t
n(R, λk) denote marginal

probability of preference state ω = R. I now define “confounding beliefs”.

Definition A.1. Let the pair π̂l and π̂r be public beliefs held by types l and r, respectively.

The pair (π̂l,π̂r) are confounding beliefs if for all ζ, ζ ′ ∈ {L,R} and λk, λj ∈ Λ such that

π̂θ(ζ, λk), πθ(ζ ′, λj) > 0, Pr(a | π̂l, π̂r, ζ, λk) = Pr(a | π̂l, π̂r, ζ ′, λj) for any a ∈ {0, 1, ..., N}.

The next proposition shows that such belief profiles generically exist when there is uncertainty
about λ.

Proposition A.1. For any Λ with |Λ| ≥ 2 and any non-degenerate prior µ0 ∈ ∆(Λ), there exists at

least one pair of confounding beliefs (π̂l,π̂r) satisfying Definition A.1.

To show learning is incomplete, it must be the case that beliefs converge with positive probability
to such a profile. The next proposition establishes this.

Proposition A.2. At least one pair of confounding beliefs is locally stochastically stable: a con-

founding outcome occurs with positive probability. However, the probability of correct learning

goes to 1 as π1 → 1; for each θ, Pr(πθt (R, λ∗)→ 1) = 1 as π1 → 1.

This result is similar to that of Jackson and Kalai (1997). In a model of “recurring games” with
both type uncertainty and payoff uncertainty, behavior doesn’t converge to Bayesian Nash equi-
librium of the stage game with known type distributions whenever payoffs depend on type. Here
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we see such non-convergence. However, players still learn with positive probability. Uncertainty
doesn’t imply society necessarily fails to learn.

Rational learning with uncertainty about tastes provides a simple and natural explanation for
persistent disagreement. At a confounding belief, people with different tastes disagree on payoffs:
relative to a risk-seeking agent, a risk-averse agent thinks it’s more likely that most are risk averse
and that A is safe. Despite continually observing behavior, players persistently disagree. This is
because at a confounding belief, new observations reveal no new information. As such, long-run
beliefs across types are interior and thus depend on priors, which are necessarily taste specific.

There are alternative explanations for how individuals who observe the same evidence disagree
in the long run. Such models include uncertainty over the distribution of private information,
as explored in Acemoglu, Chernozhukov, and Yildiz (2007 and 2009), or public signals about
a single dimension of uncertainty despite an environment with many dimensions of uncertainty
(Andreoni and Mylovanov, 2012). In all cases, so long as players are rational, disagreement is never
“fully” polarized. As I’ve argued, full polarization—where agents grow confident in alternative
hypotheses—does occur under taste projection.

C Alternative Forms of Misprediction

This section considers alternative distributional errors distinct from projection. For instance, people
might perceive a false sense of uniqueness. The analysis of limit beliefs in Sections 4.1 and 4.2 was
independent of assumptions placed on λ̂. Hence, we can directly apply those results to λ̂ exhibiting
any particular pattern of error.

Proposition 4, which tells us when a confident equilibrium belief is stable, yields the following
general result for any form of misprediction of type proportion λ:

Proposition A.3. As N → ∞, universal learning is complete if and only if for all θ ∈ Θ, λ̂(θ) ∈
(1/2, λ].

When all individuals mutually underestimate the share of people with the majority preference, then
the truth is asymptotically stable. Near an equilibrium, people observe more people taking the
majority action than they anticipated, which only strengthens their beliefs. However, this logic
implies learning may backfire in settings with small N : people may grow confident in a false state
of the world. As N grows large, however, the probability of incorrect learning goes to 0.

In all other scenarios not discussed in this paper, some—and possibly all—types hold non-
convergent beliefs. A particular example of interest is when people suffer a “false-uniqueness” bias:
each type thinks her type is least common.59 In such a case, it’s intuitive that action frequencies

59Wallace (1996) puts it well: “everybody is identical in their unspoken belief that way deep down they are different
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evolve in a cyclical fashion. As some option gains popularity, say A, an individual of either type
believes B best suits her tastes. Her reasoning is that she has the minority preference, thus the less
popular option is most likely optimal. But since all people follow this reasoning, B will eventually
become the majority choice. At this point, individuals will admit they must have been wrong, once
again believing A must be optimal for their preference. Under the false-uniqueness bias, followers
avoid the majority action, causing society’s most prevalent choice to oscillate over time. This
contrasts sharply with the intuition of the strong false-consensus bias: there, followers flock to the
majority action, increasing the frequency at which it is chosen over time.

D Proofs
Proof of Lemma 1.

Proof. This follows immediately by rewriting the posterior r(p, π) as r = p/(p+ (1− p)`) and solving the
decision rule in the text for a threshold on p.

Proof of Lemma 2.

Proof. See Lemma A.1.

Proof of Lemma 3.

Proof. Fix θ ∈ Θ and `θt ∈ R+. Suppose at/N > λ̂(θ). From Equation 3, `θt+1 < `θt ⇔ ψ(at | `θt , L) <
ψ(at | `θt , R)⇔ αθ(`θt , ω)a

[
1− αθ(`θt , L)

]N−a
< αθ(`θt , R)a

[
1− αθ(`θt , R)

]N−a
,

⇔ a log
(
αθ(`θt , L)

[
1− αθ(`θt , R)

][
1− αθ(`θt , L)

]
αθ(`θt , R)

)
+N log

(
1− αθ(`θt , R)
1− αθ(`θt , L)

)
< 0. (A.1)

If

(
αθ(`θt ,L)

[
1−αθ(`θt ,R)

][
1−αθ(`θt ,L)

]
αθ(`θt ,R)

)
> 1, then inequality A.1 holds iff

a/N <

(
1 + log

(
αθ(`θt ,L)
αθ(`θt ,R)

)/
log

(
1−αθ(`θt ,R)
1−αθ(`θt ,L)

))−1
=: κ(`θt , θ). Otherwise, A.1 holds iff a/N > κ(`θt , θ).

Finally, note that

(
αθ(`θt ,L)

[
1−αθ(`θt ,R)

][
1−αθ(`θt ,L)

]
αθ(`θt ,R)

)
> 1⇔ αθ(`θt , L) > αθ(`θt , R)⇔ λ̂(θ) + [1− 2λ̂(θ)]FL(p(`θt )) >

λ̂(θ) + [1− 2λ̂(θ)]FR(p(`θt ))⇔ λ̂(θ) < 1/2, since FR(p(`θt )) < FL(p(`θt )) by Assumption 3, since MLRP
implies first-order stochastic dominance.

Proof of Proposition 1.

Proof. Fix θ ∈ Θ `θt ∈ R+. Let m = min{1 − λ̂(θ), λ̂(θ)} and m = max{1 − λ̂(θ), λ̂(θ)}. To proceed,
I show that for all `θt ∈ R+, κ(`θt , θ) ∈ [m,m]. Since κ(`θt , θ) is monotonic in `θt , we must consider

from everyone else.”
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lim`→0 κ(`, θ) and lim`→∞ κ(`, θ). First, note that lim`→0 αθ(`, ω) = λ̂(θ) and lim`→∞ αθ(`, ω) = 1 −
λ̂(θ). Thus, we must use L’Hoptial’s rule to evaluate the limits:

∂

∂`
log

(
αθ(`, L)
αθ(`, R)

)
=
(
αθ(`, L)
αθ(`, R)

)−1 αθ(`, R) ∂∂`αθ(`, L)− αθ(`, L) ∂∂`αθ(`, R)
αθ(`, R)2 ,

∂

∂`
log

(1− αθ(`, R)
1− αθ(`, L)

)
=
(1− αθ(`, R)

1− αθ(`, L)

)−1 (1− αθ(`, R)) ∂∂`αθ(`, L)− (1− αθ(`, L)) ∂∂`αθ(`, R)
[1− αθ(`, R)]2 ,

and, since Equation 5 implies ∂
∂`αθ(`, ω) =

[
1− 2λ̂(θ)

]
fω
(
p(`)

)
∂
∂`p(`),

it follows that

lim
`→0

∂
∂` log

(
αθ(`,L)
αθ(`,R)

)
∂
∂` log

(
1−αθ(`,R)
1−αθ(`,L)

) = 1− λ̂(θ)
λ̂(θ)

, and lim
`→∞

∂
∂` log

(
αθ(`,L)
αθ(`,R)

)
∂
∂` log

(
1−αθ(`,R)
1−αθ(`,L)

) = λ̂(θ)
1− λ̂(θ)

.

Thus, lim`→0 κ(`, θ) = λ̂(θ) and lim`→∞ κ(`, θ) = 1 − λ̂(θ), and κ(`, θ) ∈ [m,m] for all ` ∈ R+.
Suppose at/N > λ̂(θ). If λ̂(θ) > 1/2, then at/N > m > κ(`θt , θ) and Lemma 3 implies `θt+1 < `θt .
Otherwise, Lemma 5 implies `θt+1 > `θt . Now suppose at/N < 1 − λ̂(θ). Similarly, if λ̂(θ) > 1/2, then
at/N < m < κ(`θt , θ) and Lemma 3 implies `θt+1 > `θt . Otherwise, if λ̂(θ) < 1/2, Lemma 5 implies
`θt+1 < `θt .

Proof of Corollary 1.

Proof. Fix an arbitrary θ ∈ Θ and suppose she has likelihood ratio `θt ∈ R+. Given observation at at public
belief `θt , Equation 3 implies `θt+1 > `θt ⇔ Ψθ(at, `θt ) > 1⇔ ψ(at | `θt , L) > ψ(at | `θt , R). SupposeN = 1
and at = 1 and let p̄ := p(`θt ) denote type θ’s private-belief threshold in t. Then Equation 5 implies ψ(at |
`θt , L) > ψ(at | `θt , R) if and only if

[
1−λ̂(θ)

]
FL(p̄)+λ̂(θ)

[
1−FL(p̄)

]
>
[
1−λ̂(θ)

]
FR(p̄)+λ̂(θ)

[
1−FR(p̄)

]
,

which holds if and only if
[
1 − 2λ̂(θ)

]
FL(p̄) >

[
1 − 2λ̂(θ)

]
FR(p̄). By Assumption 3, FL(p̄) > FR(p̄) for

all `θt ∈ R+, this inequality holds if and only if λ̂(θ) < 1
2 .

Proof of Proposition 2.

Proof. Fix an arbitrary θ ∈ Θ and suppose she has likelihood ratio `θt ∈ R+. Assuming N = 1 and at = 1,
Proposition 1 Ψθ(at = 1, `θt ) > 1 ⇔ λ̂(θ) < 1

2 . First consider λ̂(θ) ∈ (1
2 , 1) so Ψθ(at = 1, `θt ) < 1. We

want to show |`θt+1 − `θt | is increasing in λ̂(θ) on this domain. Note that |`θt+1 − `θt | = `θt |Ψθ(A, `θt ) − 1|,
which is increasing in λ̂(θ) ⇔ Ψθ(A, `θt ) is decreasing in λ̂(θ). Let p̄ := p(`θt ) denote θ’s private-belief
threshold in t. Note

Ψθ(A, `θt ) =
[
1− λ̂(θ)

]
FL(p̄) + λ̂(θ)

[
1− FL(p̄)

][
1− λ̂(θ)

]
FR(p̄) + λ̂(θ)

[
1− FR(p̄)

] =
λ̂(θ)

[
1− 2FR(p̄)

]
+ FR(p̄)

λ̂(θ)
[
1− 2FL(p̄)

]
+ FR(p̄)

so ∂
∂λ̂(θ)Ψθ(A, `θt ) < 0 if and only if λ̂(θ)

[
1− 2FR(p̄)

][
1− 2FL(p̄)

]
+ FR(p̄)

[
1− 2FL(p̄)

]
>

λ̂(θ)
[
1 − 2FL(p̄)

][
1 − 2FR(p̄)

]
+ FL(p̄)

[
1 − 2FR(p̄)

]
, which holds if and only if FL(p̄) > FR(p̄), which

is true for all `θt ∈ R+. Next, suppose that λ̂(θ) ∈ (0 < 1
2) so Ψθ(at = 1, `θt ) > 1. We want to show

that |`θt+1 − `θt | = `θt |Ψθ(A, `θt ) − 1| is decreasing in λ̂(θ) on this domain. This is true iff Ψθ(A, `θt ) is
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decreasing in λ̂(θ), which was shown in the case above. The logic is identical for at = 1, but uses the fact
that Ψθ(at, `θt ) > 1⇔ λ̂(θ) > 1

2 .

Proof of Proposition 3.

Proof. If λ̂l = λ̂r, then play and beliefs correspond to the true Bayesian equilibrium and for all t ∈ N,
πθt = πθ

′
t for all θ, θ′ ∈ Θ. This equilibrium is studied in Smith and Sørensen (2000) and this result follows

directly from their Theorem 5. Intuition is as follows: By Lemma 4, 〈`θt 〉 forms a conditional martingale
on ω = R. By the Martingale Convergence Theorem, it must converge almost surely to some stationary
limit. By Lemma 5, the only stationary limit points are ` ∈ {0,∞}. But rational beliefs never converge to
fully-incorrect beliefs, so it must be that `θt → 0 a.s.

Proof of Lemma 4.

Proof. Fix an arbitrary θ ∈ Θ and suppose ω = R. Note that

E[`θt+1 | `t] =
N∑

at=0
ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
`θt (A.2)

Thus in order for 〈`θt 〉 to form a Martingale conditional on R, we would need∑N
at=0 ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
= 1 for all `θt ∈ R+. But note

N∑
at=0

ψ(at | `t, R)Ψθ(at, `θt ) =
N∑

at=0
ψ(at | `t, R)

ψθ
(
at | `θt , L

)
ψθ
(
at | `θt , L

) =
N∑

at=0

ψ(at | `t, R)
ψθ
(
at | `θt , R

)ψθ(at | `θt , L).
Trivially, by the Law of Total Probability,

∑N
at=0 ψθ(at | `θt , L) = 1. Hence, in order for the Martingale

condition above to hold generically, we require ψ(at | `t, R) = ψθ(at | `θt , R) for all at ∈ {0, 1, ..., N} in
each t ∈ N, which is only true if λ̂(θ) = λ and for each θ, θ′ ∈ Θ, `θt = `θ

′
t in each t ∈ N. But `θt = `θ

′
t in

each t ∈ N⇔ λ̂(θ) = λ̂(θ′). Hence, the martingale condition holds if and only if λ̂(θ) = λ for all θ ∈ Θ.

Proof of Lemma 5.

Proof. This is a direct application of Theorem B.1 and B.2 of S&S. They show that any limit point must be
a steady-state of the process. That is, if `θ ∈ supp

(
`θ∞
)
, then it must be that ϕ(X, `θ) = `θ. For all θ ∈ Θ,

the only beliefs that satisfy this condition are πθ ∈ {0, 1}.

Proof of Lemma 6.

Proof. Adapted from Theorem C.1 of Smith and Sørensen (2000).

Proof of Proposition 4.

Proof. Let ˆ̀be a fixed point of the joint belief process 8. From Lemma 6, ˆ̀ is stable if χθ(ˆ̀) < 1 for all
θ ∈ Θ, and unstable if χθ(ˆ̀) > 1 for some θ. I determine when this condition holds as a function of λ̂, which
dictates the action frequency each type expects at fixed point ˆ̀. At ˆ̀, a θ-type believes all share confident
belief ˆ̀θ, and thus expects A with frequency αθ

(ˆ̀θ, ω); the true frequency is α(ˆ̀). To determine whether

this unexpected frequency reinforces each θ’s beliefs, we must calculate χθ(ˆ̀) =
∏N
a=0

(
∂
∂`ϕθ

(
a, ˆ̀θ))ψ(a,`)

for each θ.
Step 1: Calculate ∂

∂`ϕθ(a, `).
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Recall ϕθ(a, `) = Ψθ(a, `)`, where Ψθ(a, `) = ψθ(a | `, L)/ψθ(a | `, R). From the definition of
ψθ(a | `, ω) in Equation 4, it follows that

∂

∂`
ψθ(a | `, ω) =

(
N

a

)(
aαθ(`, ω)a−1[1− αθ(`, ω)

]N−a ∂
∂`
αθ(`, ω)

−(N − a)αθ(`, ω)a
[
1− αθ(`, ω)

]N−a−1 ∂

∂`
αθ(`, ω)

)
= ∂

∂`
αθ(`, ω)

(
a
ψθ(a | `, ω)
αθ(`, ω) − (N − a) ψθ(a | `, ω)

1− αθ(`, ω)

)
. (A.3)

From Equation 5 it follows that ∂
∂`αθ(`, ω) =

[
1− 2λ̂(θ)

]
fω
(
p(`)

)
∂
∂`p(`). Plugging this into Equation A.3

and using the fact p(`) = `/(1 + `)⇒ ∂
∂`p(`) = 1/(1 + `)2 yields

∂

∂`
ψθ(a | `, ω) =

[
1− 2λ̂(θ)

]
(1 + `)2 ψθ(a | `, ω)fω

(
p(`)

)( a−Nαθ(`, ω)
αθ(`, ω)

[
1− αθ(`, ω)

]) . (A.4)

Using the definition of Ψθ(a, `) and Equation A.3,

∂

∂`
Ψθ(a, `) = Ψθ(a, `)

{[
1− 2λ̂(θ)

]
(1 + `)2

[
fL
(
p(`)

)( a−Nαθ(`, L)
αθ(`, L)

[
1− αθ(`, L)

])

− fR
(
p(`)

)( a−Nαθ(`, R)
αθ(`, R)

[
1− αθ(`, R)

]) ]}. (A.5)

Finally, ∂
∂`ϕθ(a, `) = Ψθ(a, `) + ` ∂∂`Ψθ(a, `), so Equation A.5 implies

∂

∂`
ϕθ(a, `) = Ψθ(a, `)

{
1 +

[
1− 2λ̂(θ)

]
`

(1 + `)2

[
fL
(
p(`)

)( a−Nαθ(`, L)
αθ(`, L)

[
1− αθ(`, L)

])

− fR
(
p(`)

)( a−Nαθ(`, R)
αθ(`, R)

[
1− αθ(`, R)

]) ]}. (A.6)

Step 2: Evaluation of χθ(ˆ̀).
While we want to assess whether χθ(ˆ̀) exceeds 1 at the candidate equilibrium belief, the fact that fixed

points are confident beliefs adds a complication to this approach. If each component of ˆ̀ is 0 or ∞,then
χθ(ˆ̀) = 1 for all θ ∈ Θ. I now show this.

It is clear from Equation A.6 that if ` ∈ {0,∞}, then ∂
∂`ϕθ(a, `) = Ψθ(a, `). Furthermore, it is easy to

show that Ψθ(a, 0) = Ψθ(a,∞) = 1: if θ is confident in ω, then her perceived probability of outcome a is
identical in each ω ∈ {L,R}, so ψθ(a | 0, L) = ψθ(a | 0, R) and ψθ(a | ∞, L) = ψθ(a | ∞, R). Formally,
consider ˆ̀θ = 0. The private belief threshold is p(ˆ̀θ) = 0, so the perceived probability that a random player
takes A in ω is αθ(0, ω) =

[
1− λ̂(θ)

]
Fω(0) + λ̂(θ)

[
1− Fω(0)

]
= λ̂(θ). If instead ˆ̀θ =∞, then p

(ˆ̀θ) = 1
and αθ(∞, ω) = 1 − λ̂(θ). In either case, αθ

(ˆ̀θ, ω) is independent of ω, so it follows immediately from
Equation 4 that ψθ

(
a | ˆ̀θ, ω

)
is also independent of ω. Hence Ψθ

(
a, ˆ̀θ) = ψθ

(
a | ˆ̀θ, L

)
/ψθ

(
a | ˆ̀θ, R

)
= 1.

So for any π̂ ∈ Π and corresponding likelihood ratios ˆ̀,
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∂

∂`
ϕθ
(
a, ˆ̀θ)∣∣∣∣

`=ˆ̀
= 1. (A.7)

It follows from Equation 11 that χθ(ˆ̀) = 1, which tells us nothing about the stability of the process in the
neighborhood of ˆ̀. To address this, note that χθ(·) is differentiable with respect to any `θ in the neighborhood
of any ˆ̀. So, stability is determined by whether lim`θ→ˆ̀θ χθ(`θ, `−θ) = 1 from below or above. If it’s from
below, then χθ(`) < 1 at all points ` in the neighborhood of ˆ̀. So any linear approximation of the system
within this neighborhood converges toward the fixed point, implying stability. But if χθ(`) approaches 1
from above, χθ(`) > 1 at all points ` in the neighborhood of ˆ̀, implying the fixed point is not stable. Hence
the sign of the derivative of χθ(`) with respect to ˆ̀θ determines stability analogously to Lemma 6: ˆ̀is stable
if ∂∂χθ(ˆ̀) < 0 for all θ ∈ Θ, and unstable if ∂

∂`χθ(ˆ̀) > 0 for some θ ∈ Θ.
To proceed, I determine when ∂

∂χθ(ˆ̀) ≶ 0 for an arbitrary θ-type at each of the possible limit points,
ˆ̀θ = 0 and ˆ̀θ =∞, respectively.
Step 3: Stability of `θt near ˆ̀θ = 0.

Suppose π̂(θ) = 1⇒ ˆ̀θ = 0. Note that ∂
∂`θ
χθ(`) > 0⇔ ∂

∂`θ
logχθ(`) > 0. Notice

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑
a=0

ψ(a, ˆ̀)
(
∂

∂`
ϕθ(a, 0)

)−1( ∂2

∂`2
ϕθ
(
a, `θ

)∣∣∣∣
ˆ̀θ=0

)

+
N∑
a=0

(
∂

∂ ˆ̀θψ(a, `)
∣∣∣∣
`=ˆ̀

)
log

(
∂

∂`
ϕθ(a, 0)

)

=
N∑
a=0

ψ(a, ˆ̀)
(
∂2

∂`2
ϕθ
(
a, `θ

)∣∣∣∣
ˆ̀θ=0

)
(A.8)

where the final equality follows from ∂
∂`ϕθ(a, 0) = 1 (as shown above in Equation A.7). Since

∂2

∂`2ϕθ(a, `) = ∂2

∂`2 {Ψθ(a, `)`} = 2 ∂
∂`Ψθ(a, `) + ` ∂

2

∂`2 Ψθ(a, `), Equation A.8 reduces to

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑
a=0

2ψ(a, ˆ̀) ∂
∂`

Ψθ(a, 0) (A.9)

From Equation A.5 and using the fact that p(0) = 0⇒ αθ(0, ω) = λ̂(θ) and Ψθ(a, 0) = 1,

∂

∂`
Ψθ(a, 0) =

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

] ( a−Nλ̂(θ)
λ̂(θ)

[
1− λ̂(θ)

]) , (A.10)

so Equation A.9 implies

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
2
[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
λ̂(θ)

[
1− λ̂(θ)

] N∑
a=0

ψ(a, ˆ̀)
(
a−Nλ̂(θ)

)
=

2
[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
λ̂(θ)

[
1− λ̂(θ)

] (
Nα(ˆ̀)−Nλ̂(θ)

)
. (A.11)

where the second equality follows from the fact that
∑N
a=0 ψ(a, ˆ̀) = 1 and

∑N
a=0 aψ(a, ˆ̀) is simply the ex-

pected value of a Binomial(N ,α(ˆ̀)) random variable, so
∑N
a=0 aψ(a, ˆ̀) = Nα(ˆ̀). Since fL(0)− fH(0) >

0, Equation A.11 implies the following result:

54



∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔

 λ̂(θ) < α(ˆ̀) if λ̂(θ) > 1
2

λ̂(θ) > α(ˆ̀) if λ̂(θ) < 1
2 .

(A.12)

Step 4: Stability of `θt near ˆ̀θ =∞:
Recall that `θt is the likelihood ratio of state L relative to state R, hence `θt =∞ indicates confidence in

state L. This is equivalent to the likelihood ratio of state R relative to state L—the inverse of `θt—equal to 0.
Denote the inverse likelihood ratio by rθt := (`θt )−1. In order to follow the logic of the case in Step 3, which
determined stability of ˆ̀θ = 0, I assess the stability of ˆ̀θ = ∞ by determining the stability of the inverse
likelihood ratio r at 0. The stability coefficient of interest is now that of the inverse likelihood ratio:

χ̃θ( r̂) =
N∏
a=0

(
∂

∂ r ϕ̃θ
(
a, r̂θ))ψ̃(a,r)

(A.13)

where ϕ̃θ(a, r) is the transition equation for the process 〈rθt 〉: ϕ̃θ(a, r) = Ψ̃θ(a, r)r with Ψ̃θ(a, r) = ψ̃θ(a |
r, R)/ψ̃θ(a | r, L). ψ̃θ(a | r, ω) is the direct analog of ψθ(a | `, ω): it is the probability of observing a at
belief r in state ω according to type-θ’s theory of tastes.

As above, χ̃θ( r̂) = 1 if r̂θ = 0, so we must calculate the derivative or χ̃θ( r̂) with respect to rθ and
evaluate the sign at 0. As above, the fixed point is stable the sign is negative, and unstable when positive.
Identical calculations to those in Step 3 yield

∂

∂ rθ log χ̃θ(r)
∣∣∣∣r= r̂

=
N∑
a=0

2ψ̃(a, r̂) ∂
∂ rΨ̃θ

(
a, r)∣∣∣∣r= r̂

. (A.14)

Note that

∂

∂ rΨ̃θ(a, r) = Ψ̃(a, r)
{[

1− 2λ̂(θ)
]

(1 + r)2

[
fL
(
p(r)

)( a−Nαθ(r, L)
αθ(r, L)

[
1− αθ(r, L)

])

fR
(
p(r)

)( a−Nαθ(r, R)
αθ(r, R)

[
1− αθ(r, R)

]) ]}. (A.15)

At r = 0, p(r) = 1 and αθ(r, ω) = 1− λ̂(θ), so when r̂θ = 0,

∂

∂ rθ Ψ̃θ

(
a, rθ)∣∣∣∣r= r̂

=
[
1− 2λ̂(θ)

][
fL(1)− fR(1)

] (a−N(1− λ̂(θ)
)

λ̂(θ)
[
1− λ̂(θ)

] ) . (A.16)

Plugging into Equation A.14,

∂

∂ rθ log χ̃θ(r)
∣∣∣∣r= r̂

=
2
[
1− 2λ̂(θ)

][
fL(1)− fR(1)

]
λ̂(θ)

[
1− λ̂(θ)

] (
Nα( r̂)−N

(
1− λ̂(θ)

))
. (A.17)

Since fR(1) > fL(1), we have the following result:

∂

∂ rθ χ̃θ(r)
∣∣∣∣r= r̂

< 0⇔
{

1− λ̂(θ) > α( r̂) if λ̂(θ) > 1
2

1− λ̂(θ) < α( r̂) if λ̂(θ) < 1
2

(A.18)

Step 5. Linking stability to expected action frequencies.
Finally, I write the stability conditions derived in Steps 3 and 4—Results A.12 and A.18—in terms of
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the expected and true action frequencies at ˆ̀. First, note that

F̂θ

(
Mθ(ˆ̀), ˆ̀) =

{
λ̂(θ) if λ̂(θ) > 1

2
1− λ̂(θ) if λ̂(θ) < 1

2 .
(A.19)

Second, note that by definition, α(ˆ̀) = F (A, ˆ̀) and 1 − α(ˆ̀) = F (B, ˆ̀). Plugging these identities into
Results A.12 and A.18 respectively yield

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔
{

F̂θ

(
Mθ(0), 0

)
< α(ˆ̀) = F (A, ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(0), 0

)
< 1− α(ˆ̀) = F (B, ˆ̀) if λ̂(θ) < 1

2 ,
(A.20)

and

∂

∂ rθ χ̃θ(r)
∣∣∣∣r= r̂

< 0⇔
{

F̂θ

(
Mθ(∞),∞

)
< 1− α(ˆ̀) = F (B, ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(∞),∞

)
< α(ˆ̀) = F (A, ˆ̀) if λ̂(θ) < 1

2 .
(A.21)

Finally, we can rewrite the F (X, ˆ̀) terms on the right-hand side of the expressions above in terms of a
θ-type’s expected majority action at ˆ̀. Note

Mθ(0) =
{
A if λ̂(θ) > 1

2
B if λ̂(θ) < 1

2 ,
and Mθ(∞) =

{
B if λ̂(θ) > 1

2
A if λ̂(θ) < 1

2 .
(A.22)

Appropriately incorporating these identities into A.23 and A.24 finally yields the following stability condi-
tions:

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔
{

F̂θ

(
Mθ(0), 0

)
< F

(
Mθ(0), ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(0), 0

)
< F (Mθ(0), ˆ̀) if λ̂(θ) < 1

2 ,
(A.23)

and

∂

∂ rθ χ̃θ(r)
∣∣∣∣r= r̂

< 0⇔
{

F̂θ

(
Mθ(∞),∞

)
< F (Mθ(∞), ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(∞),∞

)
< F (Mθ(∞), ˆ̀) if λ̂(θ) < 1

2 .
(A.24)

Hence, in all cases—ˆ̀∈ {0,∞} and λ̂(θ) ≶ 1
2—that the stability condition holds for a θ type if and only if

F̂θ

(
M
(ˆ̀(θ)), ˆ̀(θ)

)
< F

(
M
(ˆ̀(θ)), ˆ̀), completing the proof.

Proof of Proposition 5.

Proof. Suppose ˆ̀∈ L is such that ˆ̀θ = 0 for all θ ∈ Θ. I show that this point belief is necessarily unstable;
the proof for the alternative case where ˆ̀θ =∞ for all θ ∈ Θ, which follows analogously, is omitted.

Instability of asymptotic agreement is established along the lines of Proposition 4. However, to demon-
strate the robustness of this result, I extend the proof of Proportion 4 to allow for known quality differences.
Without loss of generality, assume ∆q ≥ 0. The logic is identical: ˆ̀ is unstable if ∂

∂`θ
χθ(`)

∣∣
`=ˆ̀ > 0 for

some θ ∈ Θ. The only aspect of that proof that we must change is the function αθ(`θ, ω). ∆q 6= 0 and
∂
∂`p(0, θ) = 1/v(θ) implies

∂

∂`
αθ(0, ω) = fω(0)

∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)

−
∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

 . (A.25)
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It follows from Proposition 4 that

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑
a=0

2ψ(a, ˆ̀) ∂
∂`

Ψθ(a, 0)

=
2
[
fL(0)− fR(0)

]
αθ(0, ω)

[
1− αθ(0, ω)

]
∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)

−
∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

 N∑
a=0

ψ(a, ˆ̀)(a−Nαθ(0, ω)).(A.26)

The first equality follows from Equation A.9. To arrive at the second equality, first plug ∂
∂`αθ(0, ω) from A.25

into the expression for ∂
∂`ψθ(a | `, ω) in Equation A.3, then plug the result into Equation A.5, and evaluate

the expression at `θ = 0. Given ∆q ≥ 0, all right and passive players take A at ˆ̀, so αθ(0, L) = αθ(0, R) =
1 −

∑
θ̃∈Θl ĝ(θ̃|θ)—θ’s perceived measure of all types other than active left types. Since

∑N
a=0 ψ(a, ˆ̀)a =

E[ã] assuming ã ∼ Binomial(N,α(ˆ̀)), and since fL(0) > fR(0), it follows from Equation A.26 that
∂
∂`θ

logχθ(`)
∣∣
`=ˆ̀> 0 if and only if∑

θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)

−
∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

 [α(ˆ̀)− αθ(0, ω)
]
> 0. (A.27)

I now argue that, generically, Condition A.27 must hold for some θ ∈ Θ. First, for any θ ∈ Θr, αθ(0, ω) >
α(ˆ̀). If not, this implies that an active right type overestimates the share of active left types, providing
a contradiction. Similarly, for any θ ∈ Θl, αθ(0, ω) < α(ˆ̀). Next, define V (θ) :=

∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃) −∑

θ̃∈Θr
ĝ(θ̃|θ)
v(θ̃) . The only way for condition A.27 to fail at all θ is if V (θ) < 0 for all θ ∈ Θl, and V (θ) > 0

for all θ ∈ Θr. For a contradiction, suppose this is true. Recall v(θ) = (4kθ + ∆q)/(4kθ − ∆q). By
definition of Θr, 1/v(θ) is increasing on Θr. Because Ĝ(θ̃|θ) first-order stochastically dominates Ĝ(θ̃|θ′)
whenever θ > θ′,

∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃) is increasing in θ. Hence, for large enough θ, V (θ) < 0. Similarly, for small

enough θ, V (θ) > 0. Thus Condition A.27 must fail for some θ, implying a vector of beliefs such that all
agents agree on the state is necessarily unstable.

Proof of Proposition 6.

Proof. (Sketch.) Proposition 4 determines Π∗. From Proposition 5, we know (0, 0) /∈ Π∗ and (1, 1) /∈ Π∗.
But π̂ = (0, 1) and π̂ = (1, 0) satisfy the stability requirement of Proposition 4: each type observes more
taking her anticipated majority action than expected. We need only show that beliefs reach a neighborhood
of these stable limit points. Suppose 〈`lt, `rt 〉 reaches the north-west quadrant of belief space (see Figure 3),
which we define by all points `t such that `rt > Ll(`lt) and `lt < Lr(`rt ) (see footnote 44). Call this set LNW .
Restricted to LNW , each 〈`lt〉 and 〈1/`rt 〉 are non-negative supermartingales, and thus, by the Martingale
Convergence Theorem, converge. Since 0 is a stable limit point of each of these processes, they either both
converge to 0 (which occurs with positive probability) or exit LNW in finite time. Similarly, consider the
south-east quadrant defined by all points `t such that `rt < Ll(`lt) and `lt > Lr(`rt ). Call this space LSE .
Restricted to LSE , each 〈`rt 〉 and 〈1/`lt〉 are non-negative supermartingales, and thus converge. Hence, if
process 〈`lt, `rt 〉 enters LSE , it either converges to (∞, 0) (which occurs with positive probability) or exits.
Further more, since no stable limit points exist outside of LNW ∪ LSE , the process must enter LNW ∪ LSE
infinitely often. Thus, eventually, the process converges to one of the two stationary points.
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Proof of Lemma 7.

Proof. Since E[`θt+1 | `t] =
∑N
at=0 ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
`θt , E[`θt+1 | `t] > `θt ⇔ ξθ(`lt, `rt ) ≡

∑N
at=0 ψ(at |

`t, R)Ψθ

(
at, `

θ
t

)
> 1. We want to assess whether this holds for each θ in a neighborhood of ` = 0 = (0, 0).

Since 0 is a fixed point of the belief process for each θ, ξθ(0, 0) = 1. Hence we consider the (first-order)
Taylor-Series expansion of ξθ(`lt, `rt ) near 0. Note that

ξθ(ε, ε) ≈ ξθ(0, 0) +
N∑
a=0

ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
+ ε

(
N∑
a=0

(
∂

∂`l
ψ(a | 0, R) + ∂

∂`r
ψ(a | 0, R)

)
Ψθ

(
a, 0

))
. (A.28)

From Equation A.29,

∂

∂`θ
ψ(a | 0, R) = (1− 2λ)ψ(a | 0, R)fR(0)

(
a−Nλ
λ(1− λ)

)
, (A.29)

and since Ψθ

(
a, 0

)
= 1,

N∑
a=0

∂

∂`θ
ψ(a | 0, R)Ψθ

(
a, 0

)
= (1− 2λ)fR(0)

N∑
a=0

ψ(a | 0, R)
(
a−Nλ
λ(1− λ)

)
,

which equals (1−2λ)fR(0)E[a−Nλ]/[λ(1−λ)] where the expectation is with respect to a ∼ Binomial(N,λ).
Thus, E[a−Nλ] = 0. Substituting this result into Equation A.28 yields

ξθ(ε, ε) ≈ 1 +
N∑
a=0

ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
.

Finally, recall that E[`θt+1 | `t = (ε, ε)] > `θt = ε ⇔ ξθ(ε, ε) > 1 ⇔
∑N
a=0 ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
> 0.

From Equation A.10,

∂

∂`
Ψθ(a, 0) =

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

] ( a−Nλ̂(θ)
λ̂(θ)

[
1− λ̂(θ)

]) ,
so

N∑
a=0

ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
= N

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
λ̂(θ)

[
1− λ̂(θ)

] (λ− λ̂(θ)),

which exceeds 0 if and only if
[
1 − 2λ̂(θ)

][
λ − λ̂(θ)

]
> 0. With Strong projection, λ̂r > λ > 1/2, so

[1 − 2λ̂r][λ − λ̂r] > 0. Hence, `rt is locally a submartingale in the neighborhood of ` = (0, 0). Likewise,
λ̂l < 1/2, so [1−2λ̂l][λ−λ̂l] > 0. Hence, `lt is locally a submartingale in the neighborhood of ` = (0, 0).

Proof of Proposition 7.

Proof. We must show that 〈`t〉 is unstable at each ˆ̀. First consider a limit point in which types agree,
ˆ̀= (0, 0). At this belief, the observed frequency of A converges to λ, while right types anticipate λ̂r > λ.
By Proposition 4, `rt is unstable near 0. `lt must also be unstable near 0: by Lemma 8, there exists an ε > 0
such that `rt is submartingale so long as `lt < ε. If `lt < ε for all t, then `rt diverges to∞ and the frequency of
A converges to 1, which necessarily implies `lt →∞, a contradiction. The analogous argument holds at any
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potential limit point ˆ̀: for some θ ∈ {l, r}, `θt is immediately unstable by Proposition 4, and the martingale
property of the unstable `θt , which moves away from ˆ̀θ in expectation, implies `θ

′
t θ
′ 6= θ necessarily exits a

neighborhood about ˆ̀θ′ , contradicting stability of `θ
′
t .

Proof of Lemma 8.

Proof. The proof of Lemma 7 shows that E[`θt+1 | `t = (ε, ε)] > `θt = ε⇔
[
1−2λ̂(θ)

][
λ− λ̂(θ)

]
> 0. This

holds for λ̂r > λ > 1/2, but fails for λ̂l ∈ (1/2, λ). Hence `rt is locally a submartingale in the neighborhood
of ` = (0, 0) whereas `lt is locally a supermartingale in the neighborhood of ` = (0, 0).

Proof of Proposition 8.

Proof. This follows from a direct application of Proposition 4. In any stable equilibrium, all players who
think their taste matches the majority taste must take the majority action,X . In Case 1 (θ̃ < 0), all right types
(measure λ) and all left types with λ̂(θ) < 1/2 (measure G(θ̃)) take the majority action. By Proposition 4,
this outcome is stable if and only if no type expects to observe a share greater than G(θ̃) + λ take X at
their respective equilibrium beliefs. This is true so long as G(θ̃) + λ > max

{
1 − λ̂(θ), λ̂(θ)

}
. In Case 2

(θ̃ > 0), some right types think they are in the minority. Now all left types (measure 1 − λ) and right types
with λ̂(θ) > 1/2 (measure 1−G(θ̃)) take X . Hence, by Proposition 4, this outcome is stable if and only if
(1− λ) + 1−G(θ̃) = 2− (λ−−G(θ̃)) > max

{
1− λ̂(θ), λ̂(θ)

}
.

Proof of Proposition 9.

Proof. As N grows large, for any θ, there exists some (X,X ′) such that πθ2(X,X ′) is arbitrarily close to 1.
The only case in which this does not imply that a2/N is arbitrarily close to 0 or 1—nearly all players take the
same action—is when either πl2(B,A) ≈ 1 and πr2(B,A) ≈ 1 or πl2(A,B) ≈ 1 and πr2(A,B) ≈ 1. That is,
we do not observe a (nearly) uniform herd in period 2 whenever both types grow confident in a state where
it is optimal for players with opposing tastes to take different actions. I focus on the case where πθ(B,A)
is arbitrarily close to 1 for each θ.60 So a2/N ≈ λ. More precisely, by the Strong Law of Large Numbers,
there exists some ε(N) > 0 such that a2/N = λ−ε(N), where ε(N)→ 0 asN →∞. Now we evaluate the
perceived likelihood ratio of observing a2/N ≈ λ− εN in state (B,A) with (B,A) for a right type. Notice
that a right type expects to observe a2/N = λ̂r − ε̂(N) for some ε̂(N) > 0 such that ε̂(N)→ 0 as N →∞.
So this likelihood ratio is

Lr =


 P̂r

θ(
Xn2 = A

∣∣ ω ∈ ΩBA
)

P̂r
θ(
Xn2 = A

∣∣ ω ∈ ΩAB
)
a2/N 1− P̂r

θ(
Xn2 = A

∣∣ ω ∈ ΩBA
)

1− P̂r
θ(
Xn2 = A

∣∣ ω ∈ ΩAB
)
1−a2/N


N

=
(

λ̂r − ε̂(N)
1− λ̂r + ε̂(N)

)λ−εN (1− λ̂r + ε̂(N)
λ̂r − ε̂(N)

)1−λ+εN
=
(

λ̂r − ε̂(N)
1− λ̂r + ε̂(N)

)2λ−1−2εN
(A.30)

Note that (Lr)1/N > 1 if and only if both λ̂r > 1
2 + ε̂(N) and λ > 1

2 + ε(N). Since λ̂r > λ > 1
2 , this

holds for sufficiently large N . So (Lr)1/N > 1 implies Lr →∞ as N →∞. So right types in period 3 are
arbitrarily confident that A is their optimal choice.

Left types, however, draw the opposite inference. As above,

Ll =
(

λ̂l − ε̂l(N)
1− λ̂l + ε̂l(N)

)2λ−1−2ε(N)

, (A.31)

60Proving the alternative case in which all types are arbitrarily confident in (A,B) is essentially identical.
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so (Ll)1/N > 1 if and only if both λ̂l > 1
2 + ε̂l(N) and λ > 1

2 + ε(N). Since λ̂l < 1
2 , this fails to hold for

sufficiently large N . So (Ll)1/N < 1 implies Ll → 0 as N →∞. Hence left types in t = 3 grow arbitrarily
confident that A is their optimal choice. Thus all players enter t = 3 arbitrarily confident that A is their
optimal choice. Only those in t = 3 with strong contrary signals take B, but the measure of such players
goes to 0 as N →∞. Hence a3/N → 1 as N →∞. Once a3/N ≈ 1 is observed, players remain confident
that A is optimal for all types. As all ω ∈ ΩAA are absorbing states, beliefs remain confident that ω ∈ ΩAA

for all future periods.

Proof of Proposition 11.

Proof. Let ω := (L, λ) and ω := (R, λ). Suppose the history up to time t is a herd on A: ht = hAt . For
any finite t, this occurs with positive probability. By Lemma 9, for large t, this initial history moves both
πl(ω) and πr(ω) close to 1. Hence, given arbitrary neighborhoods about beliefs degenerate on states ω and
ω, denoted N (ω) and N (ω), respectively, with positive probability, πlt ∈ N (ω) and πrt (ω) ∈ N (ω)
for some finite t. Now we must simply show that the joint-belief process is stochastically stable within
these neighborhoods. I build on the stability arguments of Proposition 4, extending the logic to larger state
spaces (the state space considered in Proposition 4 is binary). As above, I work with likelihood ratios. Only
for the purpose of this proof, I define left-type likelihood ratios relative to state ω, but right-type’s relative
to ω; let `lt(ω) := πl(ω)/πl(ω) and `rt (ω) := πr(ω)/πr(ω). Let `lt = (`lt(L, λ), `lt(R, λ), `lt(R, λ)) and
`rt = (`rt (L, λ), `rt (L, λ), `rt (R, λ)). With these definitions, πlt ∈ N (ω) and πrt ∈ N (ω) ⇔ for each
θ = l, r, `θt is in a neighborhood about the origin, 0 ∈ R3

+.
Step 2: Linearized System Like Proposition 4, I show the stability of the linear approximation of the

system near fixed points ˆ̀l = 0 and ˆ̀r = 0. The system is multi-dimensional; let `θt+1 = ϕ(a, `θt ) define
the transition function for a θ-type’s vector of beliefs, and each element evolves according to `θt+1(ω) =
ϕθ(a, `θt , ω) := `θt (ω)ψθ(a | `θt , ω)/ψθ(a | `θt , ω∗) where ω∗ = ω if θ = r, and ω∗ = ω if θ = l.

For each θ, the system is approximated by the Jacobian of ϕθ(a, `θ) at ˆ̀θ = 0. Note that the (ω′, ω)
term of the Jacobian (the derivative of the `θt (ω′) transition function with respect to belief `θt (ω)) is

∂

∂`(ω)ϕ(a, `, ω′) = `(ω′) ∂

∂`(ω)

(
ψθ(a | `, ω′)
ψθ(a | `, ω∗)

)
+ ∂`(ω′)
∂`(ω)

(
ψθ(a | `, ω′)
ψθ(a | `, ω∗)

)
(A.32)

which, evaluated at ` = 0, is 0 when ω′ 6= ω—off-diagonal terms of the Jacobian are 0. Hence, the
approximate system is diagonal: to a first-order approximation, the likelihood ratio of ω′ has no effect on
the evolution of the likelihood ratio of ω 6= ω′. As such, the fixed point is stable if each dimension satisfies
the uni-dimensional stability criterion developed in Proposition 4. Accordingly, the remainder of this proof
follows the same steps as Proposition 4, but within this modified environment; for brevity, the arguments
here are terse—some analogous derivations in 4 are referenced for details.

From Proposition 4, `θt will remain in the neighborhood of 0 so long as for each θ, the “stability coeffi-

cient” (Equation 11) for each ω and a ∈ {0, 1, ..., N} is less than one at ˆ̀l = 0, ˆ̀r = 0:

χθ(ˆ̀l, ˆ̀r, ω)
∣∣∣∣
(ˆ̀l,ˆ̀r)=(0,0)

< 1, (A.33)

where

χθ(ˆ̀l, ˆ̀r, ω) =
N∏
a=0

(
∂

∂`(ω)ϕθ
(
a, `θ, ω

))ψ(a,ˆ̀l,ˆ̀r)
, (A.34)

60



and ψ(a, ˆ̀l, ˆ̀r) is the true probability of observation a at beliefs ˆ̀l, ˆ̀r. Note ψ(a,0,0) = 1⇔ a = N , and
0 otherwise; all agents play A at these beliefs. So, χθ(0,0, ω) < 1 ⇔ ∂

∂`(ω)ϕθ
(
N,0, ω

)
< 1. From A.32,

for any ω, ∂
∂`(ω)ϕθ

(
N, `θ, ω

)
= ψθ(N | 0, ω)/ψθ(N | 0, ω∗) = αθ(0, ω)/αθ(0, ω∗), where αθ(`θ, ω) is the

probability a random player choosesA at beliefs `θ according to a θ-type. (At `l = 0, `r = 0, left types think
all left types choose A, and right types think all right types choose A.) First consider θ = l, so ω∗ = ω =
(L, λ), and αl(0, ω∗) = 1−λ. If ω = (ζ, λ) for either ζ ∈ {L,R}, then αl(0, ω)/αl(0, ω∗) = (1−λ)/(1−
λ) < 1 since λ < λ, so χl(0,0, ω) < 1. For ω = (R, λ), αl(0, ω)/αl(0, ω∗) = (1 − λ)/(1 − λ) = 1, and
the stability test is inconclusive. Before turning to the inconclusive case, consider θ = r: ω∗ = ω = (R, λ),
and αr(0, ω∗) = λ. If ω = (ζ, λ) for either ζ ∈ {L,R}, then αr(0, ω)/αr(0, ω∗) = λ/λ < 1, so
χr(0,0, ω) < 1. For ω = (L, λ), αr(0, ω)/αr(0, ω∗) = (1 − λ)/(1 − λ) = 1. So, for each type, we’ve
established stability along each dimension except for one.

To deal with the “inconclusive” cases where χθ(0,0, ω) = 1, I follow Proposition 4, and show that
∂

∂`θ(ω)χθ(0,0, ω) < 0—the stability coefficient is less than one at all points in the neighborhood of the
fixed-point (excluding the fixed point itself). Analogous to Equation A.10,

∂

∂`θ(ω) logχθ(ˆ̀l, ˆ̀r, ω)
∣∣∣∣
(ˆ̀l,ˆ̀r)=(0,0)

= 2
N∑
z=0

ψ(a,0,0) ∂

∂`θ(ω)

(
ψθ(a | 0, ω)
ψθ(a | 0, ω∗)

)
. (A.35)

For ω = (ζ, λ) and ω∗ = (ζ∗, λ∗), analogous to Equation A.5

∂

∂`θ(ω)

(
ψθ(a | `θ, ω)
ψθ(a | `θ, ω∗)

)
=
(
ψθ(a | `θ, ω)
ψθ(a | `θ, ω∗)

){
∂pθ(`θ)
∂`θ(ω)

[
[1−2λ]fζ

(
pθ(`θ)

)( a−Nαθ(`θ, ω)
αθ(`θ, ω)

[
1− αθ(`θ, ω)

])

− [1− 2λ∗]fζ∗
(
pθ(`θ)

)( a−Nαθ(`θ, ω∗)
αθ(`θ, ω∗)

[
1− αθ(`θ, ω∗)

]) ]}, (A.36)

where pθ(`θ) is the probability of location state L according to a θ-type. For each θ, let Σθ be the sum of
the components of `θ; for θ = l, pl(`l) = (1 + `l(L, λ))/(1 + Σl), and for θ = r, pl(`l) = (`r(L, λ) +
`r(L, λ))/(1 + Σr). Note that pl(0) = 1 and pr(0) = 0. Note A.35 is less than 0 so long as A.36 is less than
0 when evaluated at `l = 0, `r = 0, and a = N . Assuming λ = λ∗ (which is always so in any “inconclusive
case”), this holds if and only if

Cθ(ω) := ∂pθ(0)
∂`θ(ω) [1− 2λ∗]

[
1− αθ(0, ω∗)

][
fζ
(
pθ(0)

)
− fζ∗

(
pθ(0)

)]
< 0. (A.37)

Hence I need only show show C l(R, λ) < 0 and Cr(L, λ) < 0. From the definition of pθ above,
∂pl(0)/∂`l(R, λ) < 0, and ∂pr(0)/∂`r(L, λ) > 0. So, θ = l ⇒ ω∗ = (L, λ) ⇒ C l(R, λ) < 0 ⇔
λ[1 − 2λ]

[
fR(1) − fL(1)

]
> 0, which holds since fR(1) > fL(1) and λ < 1

2 . And, θ = r ⇒ ω∗ =
(R, λ) ⇒ Cr(L, λ) < 0 ⇔ (1 − λ)[1 − 2λ]

[
fL(0) − fR(0)

]
< 0, which holds since fL(0) > fR(0) and

λ > 1
2 .

Proof of Proposition A.1.

Proof. Let λ, λ be arbitrary elements of Λ with λ < λ. I show that there exists a confounding belief that
puts positive weight on states ω := (L, λ) and ω := (R, λ), and zero weight on all other states. At this
belief, players are nearly certain the state is one of ω or ω, but cannot discern which is true. We want to find
π̂l and π̂r such that Pr(at | π̂l, π̂r, L, λ) = Pr(at | π̂l, π̂r, R, λ), which holds so long as the probability

61



any random player chooses A given these beliefs is equal in each state of the world. Denote this probability
α(π̂l,π̂r, ω). When ω = (ζ, λ) for ζ ∈ {L,R}, then α(π̂l,π̂r, ω) = λ

[
1−Fζ(1− π̂r)

]
+(1−λ)Fζ(1− π̂l). I

now construct π̂l and π̂r that meet the condition for “confounding” beliefs, above. For each θ, parameterize
beliefs by some pθ ∈ (0, 1): let π̂θ(ω) = pθ, π̂θ(ω) = 1− pθ, and π̂θ(ω) = 0 for all ω 6= ω, ω. Importantly,
we can write both pl and pl as a function of some neutral belief p. Note that pθ is the belief that ω = ω
held by an agent with taste θ after history h. Consider a neutral observer who observes history h, but does
not yet know her taste—say her belief that ω = ω is p. If she then learns her taste is θ, then pθ must follow
from Bayes’ rule as a function of p: pl(p) = Pr(ω | h, θ = l) = (1 − λ)p/((1 − λ)p + (1 − λ)(1 − p))
and pr(p) = Pr(ω | h, θ = r) = λp/(λp + λ(1 − p)). Clearly, for each θ, limp→0 p

θ(p) = 0 and
limp→1 p

θ(p) = 1. Now consider the condition for confounding beliefs: Pr(at | π̂l, π̂r, L, λ) = Pr(at |
π̂l, π̂r, R, λ)⇔ α(π̂l,π̂r, ω) = α(π̂l,π̂r, ω)⇔

λ
[
1− FL(pr(p))

]
+ (1− λ)FL(pl(p)) = λ

[
1− FR(pr(p))

]
+ (1− λ)FR(pl(p)). (A.38)

I now argue that there must exist p ∈ (0, 1) such that Equation A.38 holds. At p = 0, the left-hand side is λ,
and the right-hand side is λ. At p = 1, the left is 1−λ, and the right is 1−λ. Since λ < λ, the left-hand side
is less than the right at p = 0, but greater than than the right at p = 1. By continuity, there exists p ∈ (0, 1)
so that Equation A.38 holds. Hence, I’ve constructed a pair of confounding beliefs, π̂l and π̂r.

Proof of Proposition A.2.

Proof. Let λ, λ be arbitrary elements of Λ with λ < λ, and let ω := (L, λ) and ω := (R, λ). Consider
the confounding belief constructed in the proof of Proposition A.1, above. That is, π̂l and π̂r such that,
for each θ, π̂θ(ω) = pθ, π̂θ(ω) = 1 − pθ, and π̂θ(ω) = 0, where pl(p) = Pr(ω | h, θ = l) = (1 −
λ)p/((1 − λ)p + (1 − λ)(1 − p)) and pr(p) = Pr(ω | h, θ = r) = λp/(λp + λ(1 − p)), and p is the
value that solves Equation A.38. I show that the neutral belief process—the belief of a player who does not
know her taste—is stochastically stable in the neighborhood of p. If this is so, then taste dependent beliefs
converge with positive probability to the confounding belief identified above. Let the neutral likelihood ratio
of state ω relative to ω after history ht be denoted by `nt . Let ψ(a | `nt , ω) be the probability of observation
a ∈ {0, 1, ..., N} in state ω given neutral belief `nt . Fix ω = ω. Then process 〈`nt 〉 evolves according to
`nt+1 = `nt ψ(a | `nt , ω)/ψ(a | `nt , ω) := ϕ(a, `nt ) with transition probability ψ(a | `nt , ω). We want to
show this process is stable in the neighborhood of ˆ̀n := p/(1 − p), where p generates the confounding
belief, given above. By definition of the confounding belief, ˆ̀n is a fixed point of the neutral-belief Markov
process: ˆ̀n = ϕ(a, ˆ̀n) for any a. We can use Lemma 6 to assess whether ˆ̀n is stable. That is, it must be

that χ(ˆ̀n) < 1, where χ(ˆ̀n) =
∏N
a=0

(
∂
∂`ϕ(a, ˆ̀n)

)ψ(a|ˆ̀n,ω)
. If this Markov process is also a martingale,

then χ(ˆ̀n) < 1 (see Smith and Sørensen (2000), Theorem 4). Clearly, 〈`nt 〉 forms a martingale conditional
on ω = ω: E[`nt+1 | `nt ] =

∑N
a=0 ψ(a | `nt , ω)ϕ(a, `tn) = `tn

∑N
a=0 ψ(a | `nt ω) = `nt .
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