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This Online Appendix is organized as follows. Section B presents proofs for the results with
private and common values from Section V; Section C provides the analysis of asymmetric auctions
underlying Section VI.A; and Section D considers an example with affiliated values.

B Proofs for Section V

Proof of Lemma 1. Part 1. Fix θ ∈ Θ. For any ti ∈ T (θ), let Ŝ(θ|ti) denote the set of realizations
of Sj consistent with θj = θ. Note that if t(ti) + γs < t(ti) + γs, then

Ŝ(θ|ti) =


[s, (θ − t(ti))/γ] if θ < t(ti) + γs

[(θ − t(ti))/γ, (θ − t(ti))/γ] if θ ∈ [t(ti) + γs, t(ti) + γs]

[(θ − t(ti))/γ, s] if θ > t(ti) + γs.

(B.1)

If instead t(ti) + γs > t(ti) + γs, then Ŝ(θ|ti) is identical to (B.1) except the middle region of θ
has reversed bounds. Let ĝ(s|θ; ti) denote Player i’s perceived PDF of Sj conditional on θj = θ:

ĝ(s|θ; ti) = f̂(θ − γs|ti)g(s)∫
Ŝ(θ|ti) f̂(θ − γs̃|ti)g(s̃)ds̃

. (B.2)

Thus
Ê[Sj|θj = θ; ti] =

∫
Ŝ(θ|ti)

sĝ(s|θ; ti)ds. (B.3)

Let MS(θ) ≡ Ê[Sj|θj = θ; t] denote the expectation above according to a player with the lowest
private value. We now show that the expectation according to any other player can be written in
terms of MS; namely, Ê[Sj|θj = θ; ti] = MS(θ − δ(ti)) where δ(ti) ≡ α(ti − t). Using the
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relationship between the perceived and true PDF, notice that

MS(θ − δ(ti)) =
∫
Ŝ(θ−δ(ti)|t)

sĝ(s|θ − δ(ti); t)ds =
∫
Ŝ(θ−δ(ti)|t) sf

(
θ−γs−δ(ti)−αt

1−α

)
g(s)ds∫

Ŝ(θ−δ(ti)|t) f
(
θ−γs−δ(ti)−αt

1−α

)
g(s)ds

=
∫
Ŝ(θ−δ(ti)|t) sf̂ (θ − γs|ti) g(s)ds∫
Ŝ(θ−δ(ti)|t) f̂ (θ − γs|ti) g(s)ds

. (B.4)

From Equation B.1, notice that Ŝ(θ − δ(ti)|t) = Ŝ(θ|ti). It thus follows from Equation (B.4) that

MS(θ − δ(ti)) =
∫
Ŝ(θ|ti) sf̂ (θ − γs|ti) g(s)ds∫
Ŝ(θ|ti) f̂ (θ − γs|ti) g(s)ds

=
∫
Ŝ(θ|ti)

sĝ(s|θ; ti)ds = Ê[Sj|θj = θ; ti]. (B.5)

Since log-concavity of f and g implies that MS is increasing, it follows that Ê[Sj|θj = θ; ti] =
MS(θ − α(ti − t)) is decreasing in ti.

Next, let ĝ(s|θj ≤ θ; ti) denote Player i’s perceived PDF of Sj conditional on θj ≤ θ:

ĝ(s|θj ≤ θ; ti) = F̂ (θ − γs|ti)g(s)
Ĥ(θ|ti)

, (B.6)

where Ĥ(θ|ti) is Player i’s perceived CDF of θ. Hence, Ĥ(θ|ti) =
∫ θ
t(ti)+γs ĥ(θ̃|ti)dθ̃, where

ĥ(θ̃|ti) =
∫
Ŝ(θ̃|ti) f̂(θ̃ − γs|ti)g(s)ds is Player i’s perceived PDF of θ. Notice that

Ê[Sj|θj ≤ θ; ti] =
∫
Ŝ(θ|ti)

sĝ(s|θj ≤ θ; ti)ds. (B.7)

Let M̃S(θ) ≡ Ê[Sj|θj ≤ θ; t] denote the expectation above according to a player with the lowest
private value. We will show that Ê[Sj|θj ≤ θ; ti] = M̃S(θ − δ(ti)). Notice that

M̃S(θ − δ(ti)) =
∫
Ŝ(θ−δ(ti)|t)

sĝ(s|θj ≤ θ − δ(ti); t)ds =
∫
Ŝ(θ−δ(ti)|t) sF

(
θ−γs−δ(ti)−αt

1−α

)
g(s)ds

Ĥ(θ − δ(ti)|t)

=
∫
Ŝ(θ|ti) sF̂ (θ − γs|ti) g(s)ds

Ĥ(θ − δ(ti)|t)
, (B.8)

where the final equality follows from the definition of F̂ (·|ti) and the fact that Ŝ(θ − δ(ti)|t) =
Ŝ(θ|ti) (as noted above). Furthermore,

Ĥ(θ − δ(ti)|t) =
∫ θ−δ(ti)

t+γs
ĥ(θ̃|t)dθ̃ =

∫ θ

αti+(1−α)t+γs
ĥ(θ̃ − δ(ti)|t)dθ̃, (B.9)
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and

ĥ(θ̃ − δ(ti)|t) =
∫
Ŝ(θ̃−δ(ti)|t)

f̂(θ̃ − γs− δ(ti)|t)g(s)ds

=
∫
Ŝ(θ̃|ti)

f̂(θ̃ − γs|ti)g(s)ds = ĥ(θ̃|ti). (B.10)

Thus Equation (B.9) along with the fact that t(ti) = αti + (1− α)t implies that

Ĥ(θ − δ(ti)|t) =
∫ θ

t(ti)+γs
ĥ(θ̃|ti)dθ̃ = Ĥ(θ|ti), (B.11)

and Equation (B.8) then implies that

M̃S(θ − δ(ti)) =
∫
Ŝ(θ|ti) sF̂ (θ − γs|ti) g(s)ds

Ĥ(θ|ti)
= Ê[Sj|θj ≤ θ; ti]. (B.12)

Since log-concavity of f and g implies that M̃S is increasing, Ê[Sj|θj ≤ θ; ti] is therefore decreas-
ing in ti.

Part 2. Notice that Player i believes the CDF of θi,1 is Ĥ(θ|ti)N−1, and hence

Ê[θi,1|θi,1 ≤ θ; ti] = (N − 1)
∫ θ

t(ti)+γs
θ̃
ĥ(θ̃|ti)Ĥ(θ̃|ti)N−2

Ĥ(θ|ti)N−1
dθ̃. (B.13)

Let Mθ(θ) ≡ Ê[θi,1|θi,1 ≤ θ; t] and note that Equation (B.13) along with (B.10) and (B.11) yields

Mθ(θ − δ(ti)) = (N − 1)
∫ θ−δ(ti)

t+γs
θ̃
ĥ(θ̃|t)Ĥ(θ̃|t)N−2

Ĥ(θ − δ(ti)|t)N−1
dθ̃

= (N − 1)
∫ θ

αti+(1−α)t+γs
(θ̃ − δ(ti))

ĥ(θ̃ − δ(ti)|t)Ĥ(θ̃ − δ(ti)|t)N−2

Ĥ(θ − δ(ti)|t)N−1
dθ̃

= (N − 1)
∫ θ

t(ti)+γs
(θ̃ − δ(ti))

ĥ(θ̃|ti)Ĥ(θ̃|ti)N−2

Ĥ(θ|ti)N−1
dθ̃ = Ê[θi,1|θi,1 ≤ θ; ti]− δ(ti),

and thus
Ê[θi,1|θi,1 ≤ θ; ti] = Mθ(θ − δ(ti)) + δ(ti). (B.14)

While Equation (B.14) will be useful in later proofs, it is not enough to establish that Ê[θi,1|θi,1 ≤
θ; ti] is increasing in ti. From Equation (B.13), this result follows if Ĥ(θ|ti)N−1 conditionally
stochastically dominates Ĥ(θ|t′i)N−1 for all t′i < ti; that is, for each θ ∈ Θ̂(ti) ∩ Θ̂(t′i), we have
Ĥ(θ̃|ti)/Ĥ(θ|ti) ≤ Ĥ(θ̃|t′i)/Ĥ(θ|t′i) for all θ̃ ≤ θ and strictly so for some θ̃. It is well known
that conditional stochastic dominance holds if and only if ĥ(θ|ti)/Ĥ(θ|ti) ≥ ĥ(θ|t′i)/Ĥ(θ|t′i) for
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all θ ∈ Θ̂(ti) ∩ Θ̂(t′i) and strictly so for some θ. From equations (B.10) and (B.11), the previous
condition is equivalent to

ĥ(θ̃ − δ(ti)|t)
Ĥ(θ − δ(ti)|t)

≥ ĥ(θ̃ − δ(t′i)|t)
Ĥ(θ − δ(t′i)|t)

, (B.15)

for all θ ∈ Θ̂(ti)∩Θ̂(t′i). Since δ(ti) > δ(t′i), Condition (B.15) holds for all such θ if ĥ(x|t)/Ĥ(x|t)
is decreasing in x. This is indeed the case since ĥ(x|t) is log-concave given that it is the density of
the convolution of two independent random variables that each have log-concave densities. �

Proof of Proposition 7. Let x = (t1, s1, t2, s2, . . . , tN , sN) ∈ X = (T × S)N denote the vector
of all players’ private values and signals. Without loss of generality, normalize t = 0 and let
t1 > maxi 6=1 ti—i.e., Player 1 is the efficient winner—and let X1 ≡ {x ∈ X |t1 > maxi 6=1 ti}.

Part 1. For all α ∈ [0, 1], we partition X1 into two non-empty subsets: W(α) ≡ {x ∈
X1|β̂II(θ1|t1) > maxi 6=1 β̂II(θi|ti)} and L(α) ≡ {x ∈ X1|β̂II(θ1|t1) < maxi 6=1 β̂II(θi|ti)}. W(α)
contains all realizations where the SPA is efficient (because Player 1 wins), and L(α) contains all
those where it is not.

We first show that, in the SPA, projection preserves inefficient outcomes under rational bidding;
that is, L(0) ⊆ L(α) whenever α > 0. Let x ∈ L(0), which implies that there exists j 6= 1 such that
θ1 < θj . Fixing α > 0, by Equation (12) Player i bids β̂II(θi|ti) = θi + γMS(θi − δ(ti)) + γ(N −
2)M̃S(θi − δ(ti)), where δ(ti) ≡ α(ti − t) and MS (·) and M̃S (·) are defined in Equations (B.5)
and (B.12), respectively. Thus, since δ(ti) = αti given t = 0, we have β̂II(θ1|t1) < β̂II(θj|tj)⇔

θ1 − θj < γ[MS(θj − αtj)−MS(θ1 − αt1)] + γ(N − 2)[M̃S(θj − αtj)− M̃S(θ1 − αt1)]. (B.16)

This condition holds because the left-hand side is negative, and the right-hand side is positive since
MS and M̃S are increasing, θ1 < θj , and t1 > tj . Thus, x ∈ L(α) as desired.

We now show that an inefficient outcome in the SPA is more likely with projection because
W(0) ∩ L(α) has positive measure. Fix x̄ = (t̄1, s̄1, . . . , t̄N , s̄N) such that: (i) x̄ ∈ X1; (ii) for
some j, θ̄1 ≡ t̄1 + γs̄1 = t̄j + γs̄j ≡ θ̄j; and (iii) θ̄k < θ̄1 for all k 6= 1, j. Let x̄(ε) be a vector
of types identical to x̄ except Player j’s signal is sj = s̄j − ε/γ for some ε ≥ 0. At x̄(ε), Player
j’s aggregate type is θ̄1 − ε, and thus x̄(ε) ∈ W(0). Furthermore, x̄(ε) ∈ L(α) if Player j outbids
Player 1 at x̄(ε). From (B.16), this happens if and only if

ε < γ
[
MS

(
θ̄1 − ε− αt̄j

)
−MS

(
θ̄1 − αt̄1

)]
+ γ(N − 2)

[
M̃S

(
θ̄1 − ε− αt̄j

)
− M̃S

(
θ̄1 − αt̄1

)]
. (B.17)

When ε = 0, this inequality holds since t̄j < t̄1. Furthermore, since the right-hand side of (B.17)
is continuously decreasing in ε, it is immediate that there is an open set E of ε > 0 sufficiently
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small such that Condition (B.17) holds at x̄(ε) for all ε ∈ E . Hence, x̄(ε) ∈ W(0) ∩ L(α) for
ε ∈ E . Furthermore, for ε ∈ E , all perturbations of x̄(ε) that change the signals and tastes of
Players k 6= 1, j, yet preserve the assumption that Player 1 has the highest taste and aggregate type,
are also inW(0) ∩ L(α). Thus,W(0) ∩ L(α) has positive measure.

Part 2. In Part 1, the proof that the SPA is efficient less often under projection than under
rational bidding follows entirely from the fact that β̂II(θi|ti) is decreasing in ti holding θi fixed.
Analogously, if β̂I(θi|ti) is increasing in ti holding θi fixed, then a symmetric argument (with the
appropriate swapping of signs) implies that the FPA is efficient more often under projection than
under rational bidding. By Equations (13), (B.14), and (B.12), in the FPA Player i bids β̂I(θi|ti) =
Mθ(θi − αti) + αti + γ(N − 1)M̃S(θi − αti) and

∂

∂ti
β̂I(θi|ti) = −α[M ′

θ(θi − αti) + γ(N − 1)M̃ ′
S(θi − αti)] + α.

Since Mθ and M̃S are increasing, this derivative is positive if and only if

γ <
1−M ′

θ(θi − αti)
(N − 1)M̃ ′

S(θi − αti)
. (B.18)

Using Equation (B.14), notice that M ′
θ(θ − αti) < 1 for all θ since ∂

∂ti
Ê[θi,1|θi,1 ≤ θ; ti] > 0 by

Lemma 1. Thus, the right-hand side of Condition (B.18) is positive. Let

γ̄ ≡ min
θ∈Θ̂(t)

1−M ′
θ(θ)

(N − 1)M̃ ′
S(θ)

> 0. (B.19)

It thus follows that, if γ < γ̄, then β̂I(θi, ti) is increasing in ti at all (ti, si) ∈ T × S (when holding
θi fixed), and hence the FPA is more efficient under projection than under rational bidding.

Part 3. Adopting the notation from the proof of Part 1, we first show that if the FPA is inefficient
at x ∈ X1, then the SPA is also inefficient at x. From Equation (13), Player j outbids Player 1 in
the FPA if and only if

α(t1− tj)− [Mθ(θj −αtj)−Mθ(θ1−αt1)] < γ(N − 1)[M̃S(θj −αtj)− M̃S(θ1−αt1)]. (B.20)

Hence, since Mθ and M̃S are increasing, a necessary condition for the FPA to be inefficient is that,
for some j 6= 1,

θ1 − αt1 < θj − αtj. (B.21)

Furthermore, if θj > θ1 for some j 6= 1, then the SPA is inefficient (because in this case the
SPA is inefficient with rational bidders and, hence, it is also inefficient with projection by Part 1).
Therefore, it suffices to show that if x ∈ X1 and Condition (B.21) holds for some j 6= 1 with
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θ1 > θj , then inefficiency in the FPA implies inefficiency in the SPA.
Since M ′

θ(θ) < 1 for all θ ∈ Θ̂(t) (as noted in the proof of Part 2), Mθ(θj − αtj) −Mθ(θ1 −
αt1) < (θj − αtj) − (θ1 − αt1). Applying this bound to the left-hand side of Condition (B.20)
implies that a necessary condition for inefficiency in the FPA is

θ1 − θj < γ(N − 1)[M̃S(θj − αtj)− M̃S(θ1 − αt1)]. (B.22)

Moreover, from Equation (12), the SPA is inefficient if and only if, for some j 6= 1,

θ1 − θj < γ[MS(θj − αtj)−MS(θ1 − αt1)] + γ(N − 2)[M̃S(θj − αtj)− M̃S(θ1 − αt1)]. (B.23)

Thus, the SPA is necessarily inefficient at any x ∈ X1 where the FPA is inefficient if MS(θj −
αtj) −MS(θ1 − αt1) > M̃S(θj − αtj) − M̃S(θ1 − αt1). This condition holds because (i) we are
considering θj − αtj > θ1 − αt1 (since B.21 must hold) and (ii) MS(y) − M̃S(y) is increasing
(by the assumption that µ(x) ≡ E[Sj|θj = θ] − E[Sj|θj ≤ θ] is increasing). Hence, the necessary
condition for inefficiency in the FPA, Condition (B.22), implies inefficiency in the SPA. Finally,
since Condition (B.22) is not generically sufficient for inefficiency in the FPA, the FPA strictly
outperforms the SPA in terms of efficiency. �

Proof of Lemma 2. From Equation (B.5), Ê[Sd|θd = θ̃id; ti] = MS(θ̃id−δ(ti)). Therefore, we will
show that, fixing (p1, . . . , pd), tj < ti implies that MS(θ̃jd − δ(tj)) > MS(θ̃id − δ(ti)). Recall that,
for each d ∈ {1, . . . , N − 1}, θ̃id is defined recursively as follows: initially, θ̃i1 solves

p1 = β̂0(θ̃i1|ti) = θ̃i1 + γ(N − 1)MS(θ̃i1 − δ(ti)), (B.24)

and then for d > 1, θ̃id solves

pd = β̂d−1(θ̃id; p1, . . . , pd−1|ti) = θ̃id+γ(N−d)MS(θ̃id−δ(ti))+γ
∑d−1

d′=1MS(θ̃id′−δ(ti)). (B.25)

For any integer d ≥ 1, define the function md(x) ≡ x + γ(N − d)MS(x), which is strictly
increasing in x and hence invertible. This implies that (B.25) can be written as

pd = md(θ̃id − δ(ti)) + δ(ti) + γ
∑d−1

d′=1MS(θ̃id′ − δ(ti))

⇔ θ̃id = m−1
d

(
pd − δ(ti)− γ

∑d−1
d′=1MS(θ̃id′ − δ(ti))

)
+ δ(ti).
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This inverse is well-defined given our assumption of full-support signals. Thus

MS(θ̃jd − δ(tj))−MS(θ̃id − δ(ti)) = MS

(
m−1
d

(
pd − δ(tj)− γ

∑d−1
d′=1MS(θ̃jd′ − δ(tj))

))
−MS

(
m−1
d

(
pd − δ(ti)− γ

∑d−1
d′=1MS(θ̃id′ − δ(ti))

))
. (B.26)

Since MS ◦m−1
d is increasing, the difference above is positive if and only if

pd − δ(tj)− γ
∑d−1

d′=1MS(θ̃jd′ − δ(tj)) > pd − δ(ti)− γ
∑d−1

d′=1MS(θ̃id′ − δ(ti))

⇔ δ(ti)− δ(tj) >
∑d−1

d′=1 γ
(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
. (B.27)

When d = 1, Condition (B.27) trivially holds if ti > tj , because the sum terms vanish and δ(ti)−
δ(tj) > 0. Hence, to complete the proof we need to show that Condition (B.27) holds for d ∈
{2, . . . , N − 1} given ti > tj . To do this, we prove by induction that, for d ≥ 2,

∑d−1
d′=1 γ

(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
<

d− 1
N − 1(δ(ti)− δ(tj)), (∗)

which implies Condition (B.27).
Base Case: d = 2. We will show that γMS(θ̃j1−δ(tj))−γMS(θ̃i1−δ(ti)) < 1

N−1(δ(ti)−δ(tj)).
Define the function Zd(x) ≡ γMS(m−1

d (x)). Hence,

d

dx
Zd(x) = γM ′

S(m−1
d (x)) d

dx
m−1
d (x) = γM ′

S(m−1
d (x))

1 + γ(N − d)M ′
S(m−1

d (x))

= 1
N − d+

(
γM ′

S(m−1
d (x))

)−1 , (B.28)

where we have used d
dx
m−1
d (x) =

(
m′d(m−1

d (x))
)−1

and m′d(x) = 1 + γ(N − d)M ′
S(x). Note that(

γM ′
S(m−1

d (x))
)−1

> 0 since M ′
S is positive. Thus (B.28) implies that Z ′d(x) < 1

N−d . Therefore,
from Equation (B.26), we have

γMS(θ̃j1 − δ(tj))− γMS(θ̃i1 − δ(ti)) =

γMS

(
m−1
d (p1 − δ(tj))

)
− γMS

(
m−1
d (p1 − δ(ti))

)
= Z1 (p1 − δ(tj))− Z1 (p1 − δ(ti))

< 1
N−1 ((p1 − δ(tj))− (p1 − δ(ti))) = 1

N−1(δ(ti)− δ(tj)).
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Induction Step: We show that if Condition (∗) holds for d > 2, then it holds for d+ 1. Note that

∑d

d′=1 γ
(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
=
∑d−1

d′=1 γ
(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
+γ

(
MS(θ̃jd − δ(tj))−MS(θ̃id − δ(ti))

)
. (B.29)

Following the same approach as in the base case and using Equation (B.26), we can write the
second term on the right-hand side of Equation (B.29) as:

γ
(
MS(θ̃jd − δ(tj))−MS(θ̃id − δ(ti))

)
= γMS

(
m−1
d

(
pd − δ(tj)− γ

∑d−1
d′=1MS(θ̃jd′ − δ(tj))

))
−γMS

(
m−1
d

(
pd − δ(ti)− γ

∑d−1
d′=1MS(θ̃id′ − δ(ti))

))
= Zd

(
pd − δ(tj)− γ

∑d−1
d′=1MS(θ̃jd′ − δ(tj))

)
− Zd

(
pd − δ(ti)− γ

∑d−1
d′=1MS(θ̃id′ − δ(ti))

)
<

1
N − d

(
δ(ti)− δ(tj)−

∑d−1
d′=1 γ

(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

))
.

Applying this bound to Equation (B.29) reveals that

∑d

d′=1 γ
(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
<
∑d−1

d′=1 γ
(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
+ 1
N − d

(
δ(ti)− δ(tj)−

∑d−1
d′=1 γ

(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

))
= 1
N − d

(δ(ti)− δ(tj)) + N − d− 1
N − d

∑d−1
d′=1 γ

(
MS(θ̃jd′ − δ(tj))−MS(θ̃id′ − δ(ti))

)
<

1
N − d

(δ(ti)− δ(tj)) + N − d− 1
N − d

(
d− 1
N − 1

)
(δ(ti)− δ(tj)) = d

N − 1(δ(ti)− δ(tj)),

where the final inequality follows from the induction assumption (i.e., Condition (∗) holds for
d). �

Proof of Proposition 8. Fixing α > 0, we will show that the English auction is less efficient than
the SPA by proving that (i) for any realization of bidders’ types where the SPA is inefficient, the
English auction is also inefficient, and (ii) there is a positive measure of realizations such that the
English auction is inefficient but the SPA is not. Given Parts 1 and 3 of Proposition 7, this will
additionally imply that (i) the English auction with projection is less efficient than the English
auction with rational bidders, and (ii) under projection, the English auction is less efficient than the
FPA.

Assume Si ∼ N(µ, ρ2) and Ti ∼ N(0, σ2). It readily follows that, under projection, Player i’s
expectation of γSj conditional on θj = θ is

Ê[γSj|θj = θ; ti] = λ (θ − αti) + (1− λ)γµ, (B.30)
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where
λ ≡ γ2ρ2

γ2ρ2 + (1− α)2σ2 ∈ (0, 1). (B.31)

Substituting Equation (B.30) into the bidding strategies in (14) yields:

β̂D(θi; ·|ti) = θi + (N − 1−D) [λ (θi − αti) + (1− λ)γµ] +
D∑
d=1

[
λ
(
θ̃id − αti

)
+ (1− λ)γµ

]

= θi [1 + λ(N − 1−D)] + (N − 1) [(1− λ)γµ− λαti] +
D∑
d=1

λθ̃id, (B.32)

where each θ̃id solves pd = β̂d−1(θ̃id; ·|ti) and hence

θ̃id = pd + (N − 1) [λαti − (1− λ)γµ]−∑d−1
d′=1 λθ̃

i
d′

1 + λ(N − d) . (B.33)

We first show that, in the English auction, the sum of the differences between two players’
inferences about the aggregate types of competitors who have dropped out is equal to the initial
difference in their inferences about this type scaled by the number of players who have dropped
out; i.e., ∑D

d=1

(
θ̃jd − θ̃id

)
= D

(
θ̃j1 − θ̃i1

)
, (B.34)

for all N and D ≤ N − 1. The proof follows from induction on D.
Base Case: D = 2. We will show that

∑2
d=1

(
θ̃jd − θ̃id

)
= 2

(
θ̃j1 − θ̃i1

)
. From Equation (B.33),

θ̃id − θ̃
j
d =

(N − 1)λα (ti − tj)−
∑d−1
d′=1 λ

(
θ̃id′ − θ̃jd′

)
1 + λ(N − d) . (B.35)

Hence,

θ̃j1 − θ̃i1 = (N − 1)λα (tj − ti)
1 + λ(N − 1) , (B.36)

and

∑2
d=1

(
θ̃jd − θ̃id

)
=

(N − 1)λα (tj − ti)− λ
(
θ̃i1 − θ̃

j
1

)
1 + λ(N − 2) +

(
θ̃j1 − θ̃i1

)
= 1 + λ(N − 1)

1 + λ(N − 2)
(
θ̃j1 − θ̃i1

)
+ 1 + λ(N − 3)

1 + λ(N − 2)
(
θ̃i1 − θ̃

j
1

)
= 2

(
θ̃j1 − θ̃i1

)
.

Induction Step: Suppose that
∑D
d=1

(
θ̃jd − θ̃id

)
= D

(
θ̃j1 − θ̃i1

)
. Using Equations (B.35) and
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(B.36), we have that

∑D+1
d=1

(
θ̃jd − θ̃id

)
= D

(
θ̃j1 − θ̃i1

)
+
(
θ̃jD+1 − θ̃iD+1

)
= D

(
θ̃j1 − θ̃i1

)
+

(N − 1)λα (tj − ti)− λD
(
θ̃j1 − θ̃i1

)
1 + λ(N −D − 1)

= D + 1 + (D + 1)λ(N −D − 1)
1 + λ(N −D − 1)

(
θ̃j1 − θ̃i1

)
= (D + 1)

(
θ̃j1 − θ̃i1

)
,

which completes the induction step.
We now prove that, in the English auction, the ranking of bidders’ drop-out prices remains

fixed as the auction unfolds; i.e., for all D < N − 1, we have β̂0(θj|tj) > β̂0(θi|ti) if and only if
β̂D(θj; p1, . . . , pD|tj) > β̂D(θi; p1, . . . , pD|ti) > 0. This implies that the final winner of the auction
is the bidder who plans to bid higher at the beginning of the auction, before any bidder drops out.

From Equation (B.32), notice that β̂0(θj|tj) > β̂0(θi|ti) if and only if

(1 + λ(N − 1)) (θj − θi) + λ(N − 1)α (ti − tj) > 0. (B.37)

Now consider 0 < D < N − 1. Using Equations (B.32), (B.34), and (B.36), we have
β̂D(θj; p1, . . . , pD|tj) > β̂D(θi; p1, . . . , pD|ti) if and only if

(1 + λ(N −D − 1))(θj − θi) + λ(N − 1)α (ti − tj) + λ
∑D

d=1

(
θ̃jd − θ̃id

)
︸ ︷︷ ︸

=D(θ̃j
1−θ̃

i
1)

> 0

⇔ (1 + λ(N −D − 1))(θj − θi) + λ(N − 1)α (ti − tj) + λD

(
λ(N − 1)α (tj − ti)

1 + λ(N − 1)

)
> 0

⇔ (1 + λ(N −D − 1))
[
(θj − θi) + λ(N − 1)α (ti − tj)

1 + λ(N − 1)

]
> 0,

which holds if and only if condition (B.37) is satisfied.
To complete the proof, we show that if Bidder i is the efficient winner and β̂II(θj|tj) >

β̂II(θi|ti), then β̂0(θj|tj) > β̂0(θi|ti); i.e., if the efficient bidder loses a second-price auction, then
he does not have the highest drop-out price at the beginning of an English auction and, given the
result above, he thus loses the English auction as well. From Equation (12), and defining MS (·)
and M̃S (·) as in the proof of Lemma 1, we have that β̂II(θj|tj) > β̂II(θi|ti) if and only if

θi−θj−γ[MS(θj−δ(tj))−MS(θi−δ(ti))] < γ(N−2)[M̃S(θj−δ(tj))−M̃S(θi−δ(ti))]. (B.38)
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Similarly, from Equation (14), β̂0(θj|tj) > β̂0(θi|ti) if and only if

θi − θj − γ[MS(θj − δ(tj))−MS(θi − δ(ti))] < γ(N − 2)[MS(θj − δ(tj))−MS(θi − δ(ti))].

Hence, the former condition (B.38) implies the latter whenever

MS(θj − δ(tj))−MS(θi − δ(ti)) > M̃S(θj − δ(tj))− M̃S(θi − δ(ti)), (B.39)

which holds whenever θj − δ(tj) > θi − δ(ti) due to our assumption that µ(x) ≡ E[Sj|θj =
θ]−E[Sj|θj ≤ θ] is increasing. Given that inefficiency in the SPA requires θj − δ(tj) > θi− δ(ti),
we have thus established that, with projection, the English auction is always inefficient when the
SPA is. Finally, the English auction is strictly less efficient than the SPA since inefficiency in the
SPA (Condition B.38) is sufficient for inefficiency in the English auction but not necessary given
that (B.39) strictly holds. �

C Asymmetric Auctions

In this section, we derive the bidding strategies reported in Section VI.A.

Example 1. Given his perception of the strong bidder’s strategy, a weak bidder with value t expects
to always lose the auction and, therefore, it is a best response for him to bid his value; that is,
β̂W (t) = t. Hence, we only need to prove that, when the weak bidder bids his value, a strong
bidder with value t is willing to bid β̂S (t) = (1− α) (t+ k) + αt—his perception of the highest
possible value of a weak bidder—in order to always win. The strong bidder solves:

max
bS

bS − [(1− α) t+ αt]
k (1− α) (t− bS) .

The FOC yields

bS = t (1 + α) + (1− α) t
2 .

This is weakly higher than (1− α) (t+ k) + αt, for any t ≥ t+ 2k.

Example 2. Changing notation for convenience, let the weak and strong bidder’s valuations be
distributed uniformly on [ω, ωW ] and [ω, ωS], respectively, where ωS > ωW . We first derive the
BNE bidding strategies for these generic supports, and then modify them to obtain the NBE strate-
gies. Following Maskin and Riley (2000), the equilibrium bidding functions are the solutions of
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the following system of differential equations

φ′i (b) =
φi(b)−ω
ωi−ω

1
ωi−ω

1
φj (b)− b, i, j = W,S, i 6= j, (C.1)

where φ denotes the inverse bidding function. Simplifying and re-arranging yields

(φ′i (b)− 1) (φj (b)− b) = φi (b)− φj (b) + b− ω, i, j = W,S, i 6= j.

Adding these two differential equations and re-arranging yields

d

db
{(φj (b)− b) (φi (b)− b)} = 2 (b− ω) ,

and, integrating both sides, we obtain

(φj (b)− b) (φi (b)− b) = (b− ω)2 . (C.2)

(The constant of integration is zero since φi (ω) = ω.) Now, substituting (C.2) into (C.1) yields

φ′i (b) = (φi (b)− ω) (φi (b)− b)
(b− ω)2 , i = W,S. (C.3)

In order to solve the differential equation (C.3), we use a change of variables. Let ψi (b) be
implicitly defined by

φi (b) = b+ ψi (b) (b− ω) (C.4)

so that
φ′i (b) = ψ′i (b) (b− ω) + ψi (b) + 1.

It then follows that the differential equation (C.3) can be re-written as

ψ′i (b) (b− ω) + ψi (b) + 1 = (b− ω) (ψi (b) + 1)ψi (b) (b− ω)
(b− ω)2

⇔ ψ′i (b) (b− ω) = (ψi (b) + 1) (ψi (b)− 1) ⇔ ψ′i (b)
ψi (b)2 − 1

= 1
b− ω

,

whose solution can be easily verified to be

ψi (b) = 1− ki (b− ω)2

1 + ki (b− ω)2 ,
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where ki is a constant of integration.1

Substituting ψi (b) into (C.4) yields

φi (b) = b+ 1− ki (b− ω)2

1 + ki (b− ω)2 (b− ω) = 2b− ω + ωki (b− ω)2

1 + ki (b− ω)2 . (C.5)

Since φi (b) = t, solving for b yields the following equilibrium bidding functions:

β∗i (t) = ω + 1
ki (t− ω)

(
1−

√
1− ki (t− ω)2

)
, i = W,S. (C.6)

To find ki, let b be the bid of the highest-value bidder. Since φi
(
b
)

= ωi, Equation (C.2) yields

(
ωj − b

) (
ωi − b

)
=
(
b− ω

)2
⇔ b = ωiωj − ω2

ωi + ωj − 2ω .

Hence, for b = b, Equation (C.5) becomes

ωi =
2
(
ωiωj−ω2

ωi+ωj−2ω

)
− ω + ωki

(
ωiωj−ω2

ωi+ωj−2ω − ω
)2

1 + ki
(
ωiωj−ω2

ωi+ωj−2ω − ω
)2

⇔ ki

(
ωiωj − ω2

ωi + ωj − 2ω − ω
)2

(ωi − ω) = ωj (ωi − ω)− ωi (ωi − ω)
ωi + ωj − 2ω

⇔ ki = (ωj − ωi) (ωi + ωj − 2ω)
[ω (ωj + ωi)− (ωjωi + ω2)]2

. (C.7)

From these BNE bidding functions, we can obtain the NBE bidding functions by replacing ω,
ωi, and ωj with the appropriate expressions. Namely, replacing ω with ω̂ = αt and replacing ωi
and ωj with ω̂i = αt+ (1− α)ωi and ω̂j = αt+ (1− α)ωj , respectively, yields

β̂i (t) = αt+ (1− α) (ωiωj)2

t
(
ω2
j − ω2

i

)
1−

√√√√√1−

(
ω2
j − ω2

i

)
t2

(ωiωj)2

 ,
1Indeed, it is easy to verify that

ψ′
i (b) = − 4ki (b− ω)[

1 + ki (b− ω)2
]2

and
ψ′

i (b)
ψi (b)2 − 1

= −4ki (b− ω)[
1− ki (b− ω)2

]2
−
[
1 + ki (b− ω)2

]2 = 1
(b− ω) .
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and

β̂j (t) = αt+ (1− α) (ωiωj)2

t
(
ω2
i − ω2

j

)
1−

√√√√√1−

(
ω2
i − ω2

j

)
t2

(ωiωj)2

 .
For ωi = 1

1−z and ωj = 1
1+z , we obtain the bidding strategies in the text.

D Example with Affiliated Private Values

The following example illustrates claims from Section VI.B. Namely, bidding under projection
with IPV leads all types to overbid (relative to rational IPV benchmark), whereas rational bidding
with APV leads high types to overbid and low types to under bid (again, relative to the rational IPV
benchmark).

Suppose N = 2. Private values for each bidder have a marginal distribution F (t) = .5t(t + 1)
over T = [0, 1]; hence, f(t) = .5 + t. First, consider the case where private values are independent
across bidders. Under projection, bidder i with type ti perceives the CDF of valuations as

F̂ (t|ti) = F
(
t− αti
1− α

)
= (t− αti) (t− αti + 1− α)

2(1− α)2 . (D.1)

Using Proposition 2, the NBE bidding function is

β̂IPV (ti) = β∗IPV (ti) + α

[
2t2i + 3ti
6(ti + 1)

]
, (D.2)

where β∗IPV (ti) = ti(4ti+3)
6(ti+1) is the rational bidding function. It is immediate that β̂IPV (t) > β∗IPV (t)

for all t > 0 whenever α > 0.
This “uniform overbidding” relative to the rational IPV benchmark does not emerge when val-

uations are affiliated and bidders are rational. To see this, now suppose that the joint distribution of
valuations (consistent with the marginal distribution above) is F (t1, t2) = 1

2t1t2 (t1t2 + 1). Then
the posterior CDF of an opponent’s valuation is F (x|t) = x

2t+1 (2xt+ 1), and the rational bidding
function is

β∗APV (t) =
∫ t

0
yd

(
e
−
∫ t

y
1+4z2
z+2z3 dz

)
= (4t2 − 1)

√
2t2 + 1 + 1

6t
√

2t2 + 1
. (D.3)

Importantly, one can show that β∗APV (t) crosses β∗IPV (t) only once and from below: there exists a
t̄ ∈ (0, 1) such that β∗APV (t) < β∗IPV (t) for t ∈ (0, t̄) and β∗APV (t) > β∗IPV (t) for t ∈ (t̄, 1).
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