
Quality is in the Eye of the Beholder:
Taste Projection in Markets with Observational Learning∗

Tristan Gagnon-Bartsch† Antonio Rosato‡

April 25, 2024

Abstract
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tastes, such “taste projection” generates discrepant quality perceptions, which are decreasing
in a projector’s taste and increasing in the observed price. These biased inferences produce an
excessively elastic market demand. We also analyze dynamic monopoly pricing with short-lived
taste-projecting consumers. Optimal pricing follows a declining path: a high initial price inflates
future buyers’ perceptions and lower subsequent prices induce over-adoption.
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1 Introduction

We often use the popularity of a product to assess its quality. We may naturally expect, for instance,
that a new electric car has better performance when more people buy it, that a new health trend
provides greater benefits when more of our friends adopt it, or that an investment has a higher ex-
pected return when our colleagues flock to it. Indeed, a large theoretical and empirical literature has
emphasized how observational learning shapes the adoption of new products, spanning consumer
goods, entertainment, insurance plans, agricultural technologies, and financial products (see, e.g.,
Mobius and Rosenblat, 2014 and Bikhchandani et al., 2021 for reviews).

But how does social learning operate when people don’t fully appreciate how others’ preferences
differ from their own? In all the examples above, choices are not driven purely by perceptions of a
commonly-valued quality; they also depend on idiosyncratic tastes and motives. For instance, some
consumers driving electric vehicles might have a distinct desire to reduce their carbon footprints,
and some people investing in cryptocurrencies might be more risk tolerant than others. Yet, do
consumers and investors properly account for the fact that others’ choices reflect their tastes and
not just their private information? Long-standing literatures in psychology on social projection and
the false-consensus effect, along with mounting evidence from economics, suggest the answer is
no. In particular, people often exaggerate the degree to which others’ tastes are similar to their own
(Ross et al., 1977; Marks and Miller, 1987; Krueger and Clement, 1994; Engelmann and Strobel,
2012). For example, those with specific tastes for certain consumer products tend to overestimate
how many share these tastes (Orhun and Urminsky, 2013). Such misperceptions also arise when
evaluating others’ risk preferences (Faro and Rottenstreich, 2006), political preferences (Delavande
and Manski, 2012), and taste for effort (Bushong and Gagnon-Bartsch, 2023). Moreover, a recent
meta-analysis by Bursztyn and Yang (2022) shows that misperceptions of others are widespread in
the field, underscoring the importance of further understanding their market implications.

In this paper, we study how such “taste projection” distorts consumers’ beliefs, market demand,
and prices in a social-learning environment where valuations for a product have both a common
and private component. The common component—the product’s intrinsic quality—is initially un-
known to (some) consumers, who try to infer it from the quantity demanded by others at a given
price. Consumers know the private component of their valuation—their idiosyncratic taste for the
product—but wrongly “project” this onto others: they exaggerate how similar others’ tastes are to
their own. We show that taste projection leads consumers to systematically mislearn a product’s
quality, characterizing how these biased beliefs depend on an individual’s own taste and the prod-
uct’s price, and how they ultimately shape market demand. Furthermore, we analyze the optimal
pricing strategy of a seller who is aware of consumers’ projection.

Our implications are particularly relevant for markets where heterogeneous consumers actively
rely on others’ choices to guide their own—e.g., those with prominent best-seller lists or a ten-
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dency to trend on social media. Consider, for instance, the health and wellness industry, where
new products, whose quality is ex-ante uncertain and difficult to ascertain, are routinely introduced;
e.g., “innovative” fitness equipment and classes, or “revolutionary” dietary regimens.1 Consumers’
willingness to pay for such products is of course influenced by their perceived health benefits; yet,
consumers likely differ in their idiosyncratic tastes for exercise or a particular diet.

For a concrete example, consider Inês and Peter who are independently contemplating whether
to enroll in a fitness program touting some of these new features. Inês enjoys an active lifestyle; Peter
does not, but his physician has encouraged him to get in shape. Suppose they both see an article
reporting the number of people who joined the program in the past six months. Projection will
lead them to draw different inferences about the program’s potential benefits. Projecting her love of
fitness onto others, Inês will find the take-up rate disappointingly low. Conversely, the number of
adopters will look high to Peter. Hence, they draw conflicting conclusions despite observing exactly
the same information—inferred quality is “in the eye of the beholder.” In particular, Inês, who likes

exercise, forms a more pessimistic inference. Taste projection therefore induces consumers with a
stronger idiosyncratic taste for a product to inadvertently be more critical when judging its quality
from its popularity. By contrast, Peter becomes too eager to join the program, exaggerating its
benefits and potentially over-consuming in various ways (e.g., enrolling in unnecessary classes).

Moreover, because Inês and Peter’s inferences are negatively related to their idiosyncratic taste,
their (perceived) total valuations for the program will be too similar. Although the difference be-
tween these valuations should be driven solely by the difference in their private values, Inês’s pes-
simistic inference deflates her total perceived valuation, whereas the opposite holds for Peter. Hence,
taste projection is self-fulfilling: because buyers believe that idiosyncratic tastes are less dispersed
than they actually are, they will draw divergent inferences about the common value in a way that
results in perceived total valuations that are indeed less dispersed.

While the direction of Inês’s and Peter’s misinference will depend on their specific tastes, a more
subtle implication of taste projection is that they will both form inferences that increase in the pro-
gram’s price, irrespective of their taste. Indeed, because projectors underestimate the heterogeneity
in others’ valuations, they believe market demand is more elastic than it really is. Therefore, al-
though they correctly predict the take-up rate to decrease with the program’s price, they expect to
see even fewer patrons than what a rational consumer would predict as the price increases. To ratio-
nalize this higher-than-expected demand, they will conclude that quality is higher when the price is
higher. More broadly, projectors systematically overestimate the quality of a product when they see
others buying it at a price they themselves are initially unwilling to pay since they over-attribute oth-
ers’ purchases to positive information rather than differences in tastes. Hence, projection provides a

1 For instance, the New York Times has noted a growing demand for high-end fitness clubs (“Think Getting Into Col-
lege Is Hard? Try Applying for These Gyms”: www.nytimes.com/2023/03/25/style/exclusive-gym-memberships.html).
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simple yet novel explanation for why quality perceptions are often swayed by prices.2

The properties of misinference described above create new incentives for a seller that would not
arise under rational learning. First, since perceived quality increases in the observed price, there is a
“belief-manipulation effect”: in a dynamic setting, a monopolist will set high prices early on to in-
flate future consumers’ beliefs about the value of its product. This holds even when consumers think
the seller does not have an informational advantage, and hence it is not driven by classical signaling
motives. Second, projectors’ perceived valuations being excessively similar creates an “elasticity
effect”: projectors’ demand is more elastic than that of rational agents, and thus a reduction in the
current price attracts an even larger share of new consumers. Together, these effects imply that a
monopolist’s optimal pricing strategy follows a declining path. The seller uses high prices in earlier
periods to inflate later consumers’ quality perceptions (i.e., creating “hype”), and then reaps the
benefits of such manipulation by gradually lowering the price to induce over-adoption.3

We present our model in Section 2. We focus on a setting with a continuum of consumers
deciding whether to buy a product with an uncertain quality, ω ∈ R. Each consumer i’s valuation
is increasing in both ω and their private value, or “taste,” ti. Some consumers observe a signal s
correlated with ω while others are uninformed and rely on social learning to estimate ω. In our
setting, uninformed but rational agents would correctly infer the signal s from the market demand
given the price. This provides a simple environment to study the effects of taste projection, since any
learning failures arise from projection itself rather than other frictions to information aggregation.

Our model of taste projection applies Gagnon-Bartsch et al.’s (2021a) framework to our setting.
Individuals hold misspecified models about the distribution of tastes: private values are in fact in-
dependently drawn from a distribution F , yet an individual with private value ti mistakes F for a
distribution F̂ (·|ti) that is overly concentrated around his own value. We close the model by assum-
ing individuals are naive about their own bias and that of others, but are otherwise rational. Hence,
each individual i thinks everyone agrees that private values are distributed according to F̂ (·|ti).

We begin our analysis in Section 3 by studying a simple static model with a fixed price, reflecting
the logic of a rational-expectations equilibrium, albeit with misspecified expectations. As foreshad-
owed in our example, we show that taste projection has three main effects. First, a consumer’s
perceived quality is negatively related to his taste: when his private value is higher, he expects the
good to be more attractive to others, which makes him more pessimistic about its quality. We fur-
ther discuss how this prediction is supported by recent experimental evidence (Gagnon-Bartsch and

2A large literature, primarily in marketing, has documented a positive relationship between prices and perceived
quality; see Rao and Monroe (1989) and Völckner and Hofmann (2007) for reviews. This perceived relationship emerges
even when the true relationship is weak or non-existent (e.g., Gerstner, 1985 and Broniarczyk and Alba, 1994) and is
strengthened in settings where, as in our model, people observe others’ purchase decisions (Yan and Sengupta, 2011).

3In this way, we provide a novel explanation for why advertising high previous prices can persuade consumers to
buy at a new lower price. This contrasts with other explanations based on salience (e.g,. Bordalo et al., 2013, 2020) or
an intrinsic “taste for bargains” (e.g., Jahedi, 2011; Armstrong and Chen, 2020), and it arises even when prices do not
rationally signal quality (as in, e.g., Bagwell and Riordan, 1991 or Taylor, 1999).
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Bushong, 2023). Second, each buyer’s perceived quality is increasing in the price. Indeed, because
he underestimates the heterogeneity in tastes, a projector’s conjectured demand curve is a counter-
clockwise rotation of the true one. Thus, if the price were to increase, then the quantity demanded
would fall by less than what a projector would predict under the beliefs he formed at the original
price. The projector’s perceived quality consequently increases to compensate for this less-than-
predicted drop in quantity demanded. Third, perceived total valuations are less dispersed than under
rational learning. Although a projector with a high private value perceives a greater benefit from
adoption than one with a low value, the wedge between these perceptions is diminished relative to
the rational benchmark. This results in a volatile market demand that is excessively elastic.

In Section 4 we analyze a dynamic version of our model. Our first result highlights how the
demand of taste-projecting consumers overreacts to price changes: a price cut attracts too many con-
sumers by moving the marginal buyer into the region of types who overestimate quality, whereas
a price hike excludes too many for the opposite reason. In turn, this introduces an intertemporal
link in the seller’s pricing incentives. In our simple environment, the seller’s optimal strategy under
rational learning is to continually charge the static monopoly price. With projection, however, the
seller prefers a decreasing price path. Since demand overreacts to price changes, undercutting the
previous price attracts too many consumers in the current period. Yet, increasing the price boosts
the perceived quality of future consumers at the cost of forgoing current sales. The seller optimally
balances these effects by setting an inflated initial price above the static monopoly price and then
reducing it.4 We also show that projection increases the seller’s profit and discuss its effect on wel-
fare. While the expansion of sales in later periods can shrink the traditional monopoly deadweight
loss, projection can introduce new forms of inefficiency. As low types tend to overestimate quality,
they are systematically lured into buying even when they should not. Thus, the seller’s manipulative
pricing induces excessive take-up among uninformed buyers, consistent with notions of herding or
bandwagon effects. In fact, when projection is sufficiently strong, even consumers valuing the good
below its cost are lured into buying. While our dynamic analysis mostly focuses on the tractable
two-period case, we also describe how many of our results generalize to longer horizons.

Section 5 analyzes two extensions of our model. First, we consider a two-period setting with
“long-lived” consumers who can choose when to buy, and we show that projectors still over-adopt
the good even when the price is fixed. A selection effect naturally emerges: high types buy in the
first period whereas uninformed low types delay in order to glean information from early adopters.
Projectors who delay under-appreciate this selection effect, since they underestimate the taste dif-
ference between early adopters and themselves. Thus, they tend to overestimate quality, which

4This manipulating role of high initial prices is reminiscent of other strategies discussed in the literature. Stock
and Balachander (2005) show that a monopolist might make a product scarce in order to signal its quality; similarly,
Miklós-Thal and Zhang (2013) argue that “demarketing” strategies that discourage consumers (e.g., limited advertising,
understocking inventory) can raise the product’s perceived quality. Compared to this literature, we emphasize a different
mechanism through which restraining initial sales via high prices can inflate later consumers’ quality perceptions.
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generates excessive demand and systematic disappointment among these consumers.5 Second, we
revisit the static equilibrium from Section 3 but allow for multi-unit demand, and we show that pro-
jectors with a high private value will under-consume while those with a low one will over-consume.
Thus, all projectors experience inefficiencies, and those with more extreme tastes suffer more.

Section 6 concludes by discussing the robustness of our analysis as well as some additional
applications of our framework. In particular, we describe how our results continue to hold for richer
information and valuation structures, and in the presence of competition between multiple sellers.
Moreover, we point out some further implications of taste projection for price discrimination and
for how individuals ascertain the reliability of different information sources.

Related Literature

We contribute to a recent literature exploring how specific behavioral biases, along with more gen-
eral forms of model misspecification, interfere with social learning. Much of this literature con-
siders environments similar to the sequential “herding” models of Banerjee (1992), Bikhchandani
et al. (1992), and Smith and Sørensen (2000) and studies when beliefs may converge on a false state
of the world or fail to converge at all. For instance, Eyster and Rabin (2010), Bohren (2016), and
Gagnon-Bartsch and Rabin (2021) examine how neglecting the redundancy of information in others’
actions can lead society to grow convinced of a false state. Guarino and Jehiel (2013) study agents
who infer from aggregate statistics rather than the precise history. Bohren and Hauser (2021) and
Frick et al. (2023) provide frameworks for studying the convergence of beliefs under a wide range of
misspecified models. Closer to the specific error we study, Frick et al. (2020) show that when agents
share a common misperception of the type distribution, even small amounts of misspecification can
cause incorrect learning. Gagnon-Bartsch (2016) considers a simple variant of taste projection with
two types who hold conflicting misperceptions, showing how it can lead to long-run disagreement or
beliefs that perpetually cycle. Unlike the papers above, we focus on market outcomes when prices
directly influence biased agents’ beliefs and examine how a seller would optimally use prices to
distort those beliefs.

We also contribute to a literature in IO on pricing in the presence of observational learning.
This literature primarily studies rational inference under frictions to information aggregation, ana-
lyzing how a seller’s behavior either alleviates or intensifies these frictions. Bose et al. (2006, 2008)
consider a pure common-value environment with a monopolist who, in each period, faces an un-
informed short-lived buyer. Buyers learn about the common value from the history of prices and
purchase decisions. Information aggregates slowly because there is a single buyer in each period,

5 Empirical studies show that second-wave consumers tend to display greater dissatisfaction and suggest that this
may stem from consumers neglecting selection (e.g., Li and Hitt, 2008; Dai et al., 2018). Our model provides a specific
mechanism explaining why consumers may under-appreciate these selection effects.
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and the seller maximizes profits by setting prices that reveal as much information as possible. In
a similar setting, Parakhonyak and Vikander (2023) show that a monopolist may optimally create
product scarcity in order to trigger a “buying herd.” More similar to our setup, Caminal and Vives
(1996, 1999) consider a model with a continuum of short-lived consumers who are privately but
imperfectly informed about the quality of two competing products. Consumers in a later generation
don’t observe past prices, but try to infer a product’s quality from its market share in the previ-
ous period. Differently from us, because consumers cannot see the previous price, sellers set low
introductory prices to boost sales in an attempt to convince buyers that their quality is high.

The IO literature above mainly focuses on sellers who do not have an informational advantage
over buyers, and we follow in this tradition. However, another related strand of this literature exam-
ines how a privately informed seller can signal its quality through prices and other means. While we
do not analyze such signaling, some of our predictions resemble those from this literature. For in-
stance, Bagwell and Riordan (1991) analyze a monopolist facing a mix of informed and uninformed
consumers (like us), and show that high and declining prices can signal higher quality when the high-
quality seller has a sufficiently high cost. In contrast, our mechanism generates quality perceptions
that are increasing in price even when a seller’s quality is not tightly linked to their costs.6 Taylor
(1999) considers a two-period model with private and common values where a privately-informed
house seller faces short-lived buyers who try to infer the house’s quality from its time on the market.
The optimal price path is declining since a higher initial price sends a less negative signal when the
house is not sold. More broadly, we differ from both strands above by considering a setting that
neutralizes informational frictions that impede rational learning (e.g., incomplete learning, search
costs, or signaling motives) in order to isolate how taste projection itself interferes with learning.

There is also a small but growing theoretical literature on the implications of projection and the
false-consensus effect in various domains. Goeree and Grosser (2007) examine how this bias can
lead to inefficient election outcomes, while Frick et al. (2022) show how it can arise when agents
neglect assortativity in matching. Gagnon-Bartsch et al. (2021a) show how the projection of private
values can lead to overbidding and inefficiencies in auctions. Madarász (2012, 2021) and Madarász
et al. (2023) study the implications of “information projection”—whereby agents exaggerate the
extent to which others know their private information—in several contexts (e.g., communication
and bargaining). While obviously related, as private tastes represent idiosyncratic information, their
model differs from ours on two key dimensions. First, while in our model a projector thinks that he
is more informed about others’ tastes than he really is, an information-projecting agent thinks that
others are more informed than they really are. Moreover, projectors are fully naive in our model,
whereas in their model players partially anticipate and best respond to each other’s projection.

6The optimal price path with signaling can also be increasing if consumers learn about quality or their idiosyncratic
tastes from repeat purchases, as in Milgrom and Roberts (1986) and Judd and Riordan (1994). In such cases, the seller
may use introductory offers to induce learning and repeat purchases. We focus on a setting without repeat purchases.
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2 Model

In this section, we introduce the basic features of the environment and present our model of taste
projection. Subsequent sections examine projection in various settings: Section 3 considers infer-
ence in a static “steady-state” model, whereas Section 4 considers a dynamic one. We describe the
specific features of those settings in their respective sections but introduce their common core here.

2.1 Environment

Types, Payoffs, and Actions. Agents attempt to learn the fixed and commonly-valued quality of a
good, denoted by ω ∈ R, based on others’ purchase decisions. Each individual i’s total valuation for
the good, u(ω, ti), derives from both the common value, ω, and a private value (or “taste”) denoted
by ti ∈ T ≡ [t, t] ⊆ R. Private values are i.i.d. across individuals with a CDF F : T → [0, 1].
We assume that F admits a smooth, positive log-concave density f ≡ F ′. In our formulation of
taste projection detailed below, we assume each agent has a misspecified model of F , treating it
as excessively concentrated around his own taste relative to the true distribution. We allow T to
include values such that some types may have a negative valuation for the good; this lets us show
how projection may lead to inefficient adoption.

There is a continuum of agents, each of whom makes a once-and-for-all decision about whether
to buy a single unit of the good. For simplicity, we assume individual i’s total valuation is u(ω, ti) =

ω + ti; buying the good at price p yields a payoff of ω + ti − p, while rejecting it yields a payoff
normalized to zero. Each agent’s choice maximizes their expected utility given their subjective
beliefs over ω. Our static model (Section 3) considers a unit mass of agents, while our dynamic
model (Section 4) features a new unit mass of agents entering in each period.

Information Structure. Agents begin with a non-degenerate common prior over ω. We focus on
a simple signal structure to make the effects of projection transparent: there is a single signal in the
market and a fraction of agents observe its realization, s ∈ R. Let ω̄(s) ≡ E[ω|s] denote the rational
expectation of ω conditional on s. The signal is drawn from a continuous CDFG(·|ω) that obeys the
(strict) Monotone Likelihood Ratio Property in ω so that ω̄(s) is strictly increasing in s. Informed
agents will thus take actions based on ω̄(s) and uninformed agents try to infer ω̄(s) from these
actions. We assume that ω̄(s) has full support on R; this simplifies the analysis by guaranteeing that
projectors will draw a coherent inference from any possible market outcome (i.e., they never observe
outcomes they deem impossible). This signal structure is consistent, for instance, with the familiar
Gaussian model where the signal and prior are both normally distributed.7 Moreover, while this
simple structure is sufficient to study several features of misinference arising from taste projection,

7 We assume individuals have correct perceptions of the signal structure in order to isolate the effects of taste
projection from other biases. Differently from Madarász (2012, 2021), individuals in our model do not project their
information about ω; however, taste projection will endogenously distort an individual’s perception of such information.
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the online appendix shows that the main effects of projection on beliefs continue to emerge in richer
structures with heterogeneous signals.

Social Learning. Informed consumers decide whether to purchase the good based solely on their
signal, and thus on ω̄(s). Uninformed consumers instead attempt to infer ω̄(s) from the purchase
decisions of others conditional on the price, p. Let d ∈ [0, 1] denote the measure of consumers who
buy; i.e., the quantity demanded. In our static model, uniformed consumers infer ω̄(s) from the
market outcome (p, d). Similarly, in our dynamic model, consumers in a given period observe the
the market outcome from the previous period. Since we assume ω̄(s) has full support on R, any
pair (p, d) is uniquely rationalized by a feasible value of ω̄(s) whenever d ∈ (0, 1); the value that
rationalizes the data, however, will differ for projectors. Furthermore, since there is a continuum of
agents, the behavior of the informed consumers fully reveals ω̄(s) to the uninformed ones.8 Correct
social learning is therefore immediate in the rational benchmark of our setup. Taste-projecting
agents will nevertheless mislearn: although they think ω̄(s) is fully revealed, their erroneous beliefs
about others’ tastes lead them to infer an incorrect value.

Prices. We consider two cases regarding the origin of prices. First, we consider exogenously
determined prices (e.g., a price-taking seller) and describe beliefs as a function of those fixed prices.
Second, we consider a profit-maximizing monopolist. Throughout, we assume the monopolist has a
constant marginal cost normalized to zero and, importantly, is aware of consumers’ projection bias.

The seller also observes s but does not have any additional private information about ω. Because
rational uninformed agents in our setting can fully extract s from others’ actions, this assumption
guarantees that the seller and rational agents effectively have symmetric information. This neutral-
izes classical motives for the seller to use prices as signals about ω, which allows us to isolate pricing
effects that arise entirely due to taste projection.9 As such, our focus is on agents drawing inference
from demand rather than prices per se. In particular, uninformed agents ask themselves what sig-
nal s best explains the quantity demanded d when the price is p, but do not draw any inference
about s from the seller’s particular choice of price. While this assumption is admittedly strong, it
helps simplify and focus our analysis.10 Yet, this assumption does not imply that consumers ignore

8 This environment shares similarities with models of sequential observational learning with common preferences
in which a single agent acts in each period and takes a continuous action (e.g., Lee, 1993; Eyster and Rabin, 2010). In
the rational equilibrium of these models, an agent can perfectly deduce a predecessors’ beliefs based on their action. In
our setup, an individual agent’s action does not reveal their information in the rational equilibrium, but the aggregate
behavior among the continuum of observed agents will reveal their collective information.

9As we discuss further below, uninformed agents who do not directly observe s think they can fully extract s form
the market outcome, regardless of the seller’s chosen price. Thus, although the seller and some buyers might have
asymmetric information ex ante, buyers expect symmetric information at the interim stage (i.e., when making their
choices). This expectation is correct for rational buyers. Projecting buyers who misinfer s still think, albeit wrongly,
that they share common information with the seller at the interim stage.

10 We are not unique in this approach. As discussed above, most existing papers on pricing in markets with obser-
vational learning either abstract from cases in which the seller uses prices to signal private information or impose other
simplifying assumptions.
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prices when drawing inference. Indeed, the price is essential for interpreting observed demand—
conditional on s, observers rightfully expect fewer sales when p is higher. Put differently, agents in
our model infer from others’ reaction to prices, rather than the chosen price itself. The environment
we consider is also conducive to this assumption since agents believe that d alone is sufficient to
reveal s once they know p, regardless of why p was chosen.11

2.2 Taste Projection

Gagnon-Bartsch et al. (2021a) provide a general model of taste projection that is applicable to a
wide range of Bayesian games. Here, we adapt that model to our particular inferential context.12

Channeling Loewenstein et al.’s (2003) model of intrapersonal projection bias, Gagnon-Bartsch
et al. (2021a) assume that each agent i perceives the private value of another agent j as a convex
combination between j’s true value and i’s own value; that is, i believes j’s private value is t̂j(ti) ≡
αti + (1− α)tj , with α ∈ [0, 1). The parameter α captures the “degree of projection”: α = 0 is the
rational benchmark, while α → 1 represents the extreme case where an agent believes that others
share his exact taste. For tractability, we assume the degree of projection is identical across agents.

Perceptions of the Taste Distribution. The convex-combination specification above implies that
agent i’s perception of others’ private values is described by the random variable

T̂ (ti) ≡ αti + (1− α)T, (1)

where T ∼ F is the true random variable describing private values. Hence, each agent i perceives a
distribution of tastes that, relative to reality, is overly concentrated around his own taste, ti.13

This formulation of projection pins down the perceived distributions held by projecting agents,
{F̂ (·|t)}t∈T , in terms of the true distribution, F , and the projection parameter, α. Each agent per-
ceives a distribution with the same shape as F , but with the probability mass compressed around
his own value. The support of this distribution is also compressed when T is bounded: Equation
(1) implies that an agent with type t has a perceived support of T̂ (t) ≡ [t(t), t(t)] ⊂ T , where
t(t) ≡ αt+ (1− α)t and t(t) ≡ αt+ (1− α)t.14 Moreover, this type’s perceived CDF is

11 As emphasized by Gagnon-Bartsch et al. (2021b), subjectively rational inattention (with respect to a misspecified
model) may lead an agent to attend to data he deems sufficient for updating his beliefs (e.g., current demand at a given
price), while forgoing careful attention to additional data (e.g., pricing strategy). Indeed, when the seller’s cost is subject
to noise that is unobserved by buyers, our results are “attentionally stable” in the sense of Gagnon-Bartsch et al. (2021b);
that is, a consumer need not confront data that reveals his model’s misspecification.

12For a review of the motivating evidence, see Gagnon-Bartsch et al. (2021a) and the references therein.
13 Gagnon-Bartsch et al. (2021a) discusses how this approach naturally extends to cases where values are correlated

or agents are asymmetric. Since we focus on settings with i.i.d. types, we forgo these elaborations.
14 Our qualitative results do not hinge on misperceptions of the support per se. They would continue to hold if each

type’s perceived distribution were approximately the same as Equation (1) but modified to assign a small yet positive
probability to types in T \ T̂ (ti).
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F̂ (x|t) = Pr
(
T̂ (t) ≤ x

)
=


0 if x < t(t)

F
(
x−αt
1−α

)
if x ∈ [t(t), t(t)]

1 if x > t(t).

(2)

These perceived distributions inherit our assumptions on F : each F̂ (·|t) admits a smooth, positive
log-concave density f̂(x|t) =

(
1

1−α

)
f
(
x−αt
1−α

)
for x ∈ T̂ (t). Intuitively, under these biased

perceptions, a projecting agent thinks the average taste is closer to his own than it really is, and
underestimates the variance in tastes.

Higher-Order Beliefs. We assume each projector exhibits naivete about his bias by neglecting
that he and others misperceive the distribution of tastes; therefore, he fails to appreciate that others
form discrepant perceptions of this distribution. An agent with private value t thus thinks that
(i) all others believe that private values are distributed according to F̂ (·|t), and (ii) this mutual
perception is common knowledge. This assumption is motivated by the idea that people who are
inattentive to their own projection bias are likely inattentive to others’ projection bias as well; this
further differentiates our model from Madarász et al. (2023), where agents project onto others and
simultaneously anticipate others’ projection onto them.15 Naivete also differentiates our model from
rational models in which an agent’s own taste shapes his beliefs about others’ tastes; e.g., correlated
private values or uncertainty about F .16

Solution Concept. We apply Gagnon-Bartsch et al.’s (2021a) “Naive Bayesian Equilibrum”
concept to our setting. Aside from misperceptions about F (and about others’ misperceptions of
F ), we assume projecting agents are otherwise rational and believe others are rational. Each player
maximizes his expected payoff according to his distorted beliefs and the presumption that others
share his misspecified model. Therefore, each player i plays his strategy in the Bayesian Nash
Equilibrium (BNE) of the “perceived game” in which F̂ (·|ti) is indeed the commonly-known taste
distribution. The resulting profile of strategies is a Naive Bayesian Equilibrium (NBE).

To formalize this concept within our setting, suppose the true symmetric game under considera-
tion is Γ with an action space A ⊆ R. Let Γ(F̂ ) denote that same game when the type distribution
is F̂ instead of F ; all other elements of Γ

(
F̂
)

are identical to Γ. A player with type t thinks the
game is Γ

(
F̂ (·|t)

)
and presumes that players will follow a BNE of Γ

(
F̂ (·|t)

)
. Let σ̃(·|t) denote a

15Although studies on the false-consensus effect rarely elicit second-order beliefs, the few that do, e.g. Egan et al.
(2014), find that people overestimate how many share their second-order beliefs, which is consistent with naivete. Of
course, our assumption of complete naivete is likely an oversimplification; in the domain of information projection,
Madarász et al. (2023) find that experimental subjects are partially aware of others’ biases.

16Dawes (1989, 1990) argues that the type-dependent beliefs found in experimental studies may reflect rational
uncertainty about others’ tastes rather than projection bias. However, studies responding to this critique find that sub-
jects’ perceptions systematically overweight their own preference relative to information about others’ preferences when
making predictions about others (e.g., Krueger and Clement, 1994). Engelmann and Strobel (2012) and Ambuehl et al.
(2021) similarly find that a false-consensus bias remains despite access to information about others’ choices.
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symmetric pure strategy profile within the perceived game Γ(F̂ (·|t)).

Definition 1. A symmetric strategy profile σ̂ : T → A is a symmetric Naive Bayesian Equilibrium

(NBE) of Γ if, for all t ∈ T , there exists a symmetric strategy profile σ̃(·|t) : T̂ (t) → A that is a

BNE of Γ
(
F̂ (·|t)

)
and σ̂(t) = σ̃(t|t).

To provide some intuition, each player with taste t introspects about others’ behavior within his
perceived game, and this process leads him to a conjectured BNE strategy profile, σ̃(·|t), of that
game.17 He then follows the strategy prescribed by this conjectured equilibrium; i.e., he takes action
σ̃(t|t). A NBE is the strategy profile that emerges when each player engages in this reasoning.

Note that a BNE strategy in our setting is just a map from a buyer’s type, t, and expectation of
quality, ω̂, to a binary purchase decision. A projecting buyer correctly understands another buyer’s
strategy conditional on their type and expectation. However, the aggregate behavior that the project-
ing buyer observes will depend on the distribution of t and ω̂ in the market. He thus misinterprets
aggregate behavior due to two mistakes about these distributions: (i) he misperceives the distribu-
tion of types, t, acting in the market; and (ii) he mispredicts others’ quality expectations, ω̂, since he
neglects that those with different types employ inferential strategies different from his.

3 Static Model

We begin by showing how taste projection distorts beliefs in a static model. As we discuss below,
this model can be interpreted as the steady-state equilibrium of our dynamic model (in Section 4)
when the price is held constant across periods. The analysis here allows us to establish key implica-
tions of mislearning due to taste projection in a relatively simple way; it also demonstrates that the
comparative statics that will arise in the dynamic model below robustly emerge in the steady-state
as well. Namely, an agent’s perceived quality is (i) decreasing in his private taste, and (ii) increasing
in the price. Furthermore, the perceived total valuations of agents in equilibrium are excessively
similar to each other, leading to a volatile market demand that overreacts to price changes.

Building on the setup from Section 2.1, a continuum of potential buyers with unit mass face a
fixed price p. A fraction λ ∈ (0, 1) of the agents privately observe the realization of S ∼ G(·|ω)

and the remaining fraction 1 − λ do not. The “uninformed agents”—those who do not observe the
signal—attempt to extract this information from the equilibrium level of demand.

The steady-state equilibrium follows a logic similar to a rational-expectations equilibrium (e.g.,
Grossman, 1976; Grossman and Stiglitz, 1980), except agents wrongly use their misspecified models
to extract signals. Suppose the fraction of agents who buy is d ∈ [0, 1]. Each uninformed agent

17Because F̂ (·|t) inherits our assumptions on F , existence of such a BNE in the perceived game Γ(F̂ (·|t)) follows
from the existence of a BNE in the original game Γ.
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follows an inference rule that maps d into an expectation over ω, and then buys the good if their
expected valuation exceeds p. In equilibrium, agents’ inferences about ω must be consistent with
the observed quantity demanded, and this quantity must in turn be consistent with agents’ inferences.

We now derive the equilibrium. Informed agents base their buying decisions entirely on s, as
they know there is nothing more to learn. Thus, an informed agent with taste t buys if ω̄(s) + t ≥ p,
and the informed demand is DI(p; ω̄(s)) ≡ Pr [ω̄(s) + T ≥ p] = 1−F (p− ω̄(s)). We say that the
pair (p, s) admits interior demand when DI(p; ω̄(s)) ∈ (0, 1).

Uninformed agents infer ω̄(s) from the aggregate quantity demanded, d. To build intuition,
we first describe agents’ inferences in the rational benchmark. Let ω̂(d) denote the inferred value of
ω̄(s) upon observing d. Demand among the uninformed is thus Pr[ω̂(d)+T ≥ p] = 1−F (p−ω̂(d)),
and the total demand is

d = λ ·
(
1− F

(
p− ω̄(s)

))︸ ︷︷ ︸
Demand among the informed

+(1− λ) ·
(
1− F

(
p− ω̂(d)

))︸ ︷︷ ︸
Demand among the uninformed

. (3)

We require that ω̂(d) is Bayes-rational given an agent’s model. Hence, in the rational benchmark—
where players share common knowledge of F—the unique symmetric inference rule is ω̂(d) =

p−F−1(1−d). When following this rule, the observed quantity demanded d is such that uninformed
agents infer ω̂(d) = ω̄(s) and hence behave as informed agents. This follows from the fact that, in
equilibrium, d reveals the marginal buyer’s type.18

This strategy of identifying others’ information off of the inferred marginal type leads projectors
astray since they misinfer the type of the marginal buyer. More specifically, a projecting agent
thinks the market is in the rational equilibrium described above, and draws inferences following
that logic. They do so, however, using their misspecificed model. A buyer with taste ti thinks the
demand function among informed agents is D̂I(p; ω̄(s)|ti) ≡ 1− F̂

(
p− ω̄(s)|ti

)
. Furthermore, due

to naivete, he thinks others (i) share his perception of F , and hence of the demand function, and
(ii) will draw the same inference as him. Thus, an agent with taste ti thinks the rational symmetric
inference rule is ω̂(d|ti) and that, in equilibrium, ω̂(d|ti) must satisfy

d = λ ·
(

1− F̂
(
p− ω̄(s)|ti

))
︸ ︷︷ ︸

Perceived demand among the informed

+(1− λ) ·
(

1− F̂
(
p− ω̂(d|ti)|ti

))
︸ ︷︷ ︸

Perceived demand among the uninformed

. (4)

Consequently, an agent with taste ti comes to believe that the value of ω̄(s) is

ω̂(d|ti) = p− F̂−1(1− d|ti). (5)

18 For instance, if 30% of the market buys at p, then the marginal buyer has a private value at the 70th percentile of F .
Thus, rational uninformed agents simply choose to buy if their taste is above the 70th percentile and decline otherwise.
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This inferential strategy would correctly extract others’ information if agent i’s misspecified model
were correct (i.e., if T ∼ F̂ (·|ti) and agents shared this belief).19

The misinference described above involves two distinct errors. One stems from an error in first-
order beliefs: agent i’s conjectured equilibrium condition wrongly posits that tastes are distributed
according to F̂ (·|ti) instead of F . Additionally, due to naivete, agent i’s erroneous second-order
beliefs cause him to think others draw the same inference as him, ω̂(d|ti), since he neglects that
others employ discrepant models.

In truth, the demand among uninformed agents arises from each type of agent acting on their
distinct inference. The equilibrium quantity demanded is then the value of d solving

d = λ ·DI (p; ω̄(s)) + (1− λ) · Pr[ω̂(d|T ) + T ≥ p]︸ ︷︷ ︸
Demand from Uninformed Agents

, (6)

where ω̂(d|t) is given by (5) for each t ∈ T . This equilibrium quantity, call it d∗, pins down the
profile of agents’ perceptions of ω̄(s). We denote this profile by ω̂(t); that is, ω̂(t) = ω̂(d∗|t). The
following proposition establishes two central properties of misinference under taste projection.

Proposition 1. Suppose (p, s) admits interior demand. For any α > 0, there exists a unique equi-

librium profile of beliefs, and it has the following properties:

1. ω̂(t) is strictly decreasing in t. Moreover, there exists an interior type t̃ such that agents with

t > t̃ underestimate ω while those with t < t̃ overestimate ω.

2. For each type t ∈ T , ω̂(t) is strictly increasing in p.

Part 1 of Proposition 1 establishes that quality perceptions are inversely related to tastes. If agent
i has a high private taste, he expects that others do too, exaggerating the fraction of people who buy
conditional on price p and belief ω̄(s). Accordingly, the actual demand at price p looks rather weak
and, to rationalize it, he must infer a relatively low common value. Conversely, if agent i has a low
private taste, he will infer a relatively high common value. In other words, the interpretation of a
good’s popularity is in the eye of the beholder.20

Gagnon-Bartsch and Bushong (2023) find evidence of this prediction in a social-learning experi-
ment explicitly designed to study how inaccurate perceptions of others’ tastes may distort inference.
Subjects stated their updated beliefs about the amount of money on gift cards for various businesses
after observing the choices of others who received private signals about the cards’ nominal values.
The results show that observers formed lower estimates of a card’s nominal value when the card was

19Note that F̂−1(1−d|ti)→ F−1(1−d) for all ti as α→ 0. Hence, each agent’s inference collapses to the common
rational inference as projection vanishes.

20It is worth noting that, as shown in the proof of Proposition 1, perceived total valuations, ω̂(t)+t, are still increasing
in t even though ω̂(t) is decreasing in t.
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for a business that they personally found more desirable. That is, subjects interpreted others’ ac-
tions as if others shared their idiosyncratic tastes over the businesses. Gagnon-Bartsch and Bushong
(2023) also directly elicited subjects’ beliefs about others’ tastes and find that subjects indeed over-
estimated how similar others’ preferences were to their own. This suggests that taste projection may
be the mechanism driving discrepant social learning in their study.

Where is the divide between types who overestimate quality and those who underestimate it?
As noted above, inference in this setting stems from identifying the valuation of the marginal con-
sumer. The nature of projectors’ misinference can thus be understood from how they misidentify
the marginal type. Suppose that in equilibrium a fraction z of consumers turn down the good. The
marginal type thus has a private value t∗ at the zth percentile of the taste distribution. An uninformed
consumer tries to deduce t∗ since this would reveal ω̄(s) via the indifference condition t∗ = p−ω̄(s).
However, a projector misperceives the private value at each percentile other than his own. To see
this, let t̂(z|ti) be the perceived type at the zth percentile according to an agent with taste ti, and let
t∗(z) denote the true type. From (2), t̂(z|ti) solves

z = F̂ (t̂(z|ti)|ti) = F

(
t̂(z|ti)− αti

1− α

)
⇒ t̂(z|ti) = αti + (1− α)t∗(z). (7)

Reflecting the idea that projectors think others’ values are compressed around their own, type ti’s
perception of the type at the zth percentile is shifted toward his own. This recasts the intuition
from above: those with high private values overestimate the marginal type, and thus underestimate
the good’s quality; those with low private values do the opposite. Furthermore, this means that a
projector who is at the zth percentile himself—who has a taste matching that of the truly marginal
type—is the unique type who infers ω̄(s) correctly. To summarize: (i) ω̂(t∗) = ω̄(s) where t∗ =

p− ω̄(s) is the truly marginal type; (ii) ω̂(t) < ω̄(s) for all agents with t > t∗; and (iii) ω̂(t) > ω̄(s)

for all agents with t < t∗.
Part 2 of Proposition 1 shows that, irrespective of their private taste, projecting agents form

higher perceptions of the common value when p is higher. This stems from the fact that projectors
underestimate the heterogeneity in others’ private values and, therefore, underestimate the fraction
of types who would remain in the market at a higher price. If the price were to increase, a projector
would see more remain than he expected; to rationalize this discrepancy, he must then infer a higher
quality. Figure 1 depicts this intuition. First, note that a projector’s inferred quality ω̂ is such that his
perceived demand function given ω̂, D̂(·; ω̂|t), passes through the market outcome, (p, d). If the price
increased from p′ to p′′, the new quantity demanded would be determined by the true demand curve,
D(·; ω̄(s)). This new quantity, however, would be inconsistent with the projectors’ demand curve
that rationalized the outcome at p′: since projectors underestimate heterogeneity, their perceived
demand curve is a counter-clockwise rotation of D(·; ω̄(s)) (see Johnson and Myatt, 2006) and is
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Figure 1: True and perceived equilibrium demand functions.

thus more price elastic. Hence, to rationalize the quantity demanded at price p′′, a projector must
form a higher expectation of ω, consistent with an outward shift of his perceived demand curve.

While the results of Proposition 1 hold more generally, they are particularly transparent given
our assumption that u(ω, t) = ω + t.21 In this case,

ω̂(t) = (1− α)ω̄(s) + α(p− t). (8)

The degree of projection, α, drives both the positive distortionary effect of p and the negative dis-
tortionary effect of an individual’s taste. Furthermore, an uninformed agent’s perceived total value
of the good is ω̂(t) + t = (1− α)(ω̄(s) + t) + αp. Thus, as α increases, a projector’s idiosyncratic
taste t has less influence on their perceived valuation. Importantly, this implies that the perceived
valuations among uninformed agents exhibit less variation than they would under rational inference.

Proposition 2. Suppose (p, s) admits interior demand. For any α > 0, the (mis)perceived valuations

of agents in the steady-state have diminished variance relative to the rational benchmark.

Proposition 2 reveals a sense in which taste projection is self-fulfilling: when agents initially
believe that idiosyncratic tastes are more similar than they really are, their distorted inferences lead
to perceived valuations that are, in fact, more similar than they ought to be. In other words, the
agents’ initial misperception of the environment generates data that confirms their misperception.

Given the distortions in beliefs described above, what price would maximize a seller’s profits? In
this particular setting, the optimal static price under projection is the same as under rational learning.
This happens because, as noted above, the buyer with a type matching that of the marginal buyer

21 Our proofs of Propositions 1 and 2 in Appendix A establish these results for more general utility functions.
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in the rational benchmark is still marginal under projection. However, the reason that projection
affects beliefs but not market outcomes here is due to the particular setting—namely, there is no
opportunity to vary prices over time and consumers have unit demand. Although this setting is ideal
for developing intuitions on why and how projection distorts beliefs, the following sections show
that relaxing these features will cause biased beliefs to distort market outcomes. In particular, the
next section examines how the seller could benefit from dynamic pricing. Indeed, Proposition 2
hints at the fact that in a dynamic setting the demand among misinformed consumers will overreact
to price changes; intertemporal price dispersion allows a profit-maximizing seller to exploit this
overly volatile demand.

4 Dynamic Model

We now turn to a dynamic version of our model. In each period n = 1, 2, . . . , N , a unit mass
of new consumers with tastes independently drawn from F enters the market. Each consumer in
Generation n simultaneously chooses once-and-for-all whether to buy the good at price pn and
then exits; dn denotes the fraction of these consumers who buy. In each generation n ≥ 2, (i) all
individuals observe the price and aggregate demand from the previous generation, (pn−1, dn−1), and
(ii) a fraction λ ∈ (0, 1) privately observe s. Thus, 1− λ uninformed consumers in each generation
n ≥ 2 engage in social learning while the informed consumers simply follow the signal.

In period 1, consumers must make decisions based solely on their private information. To sim-
plify matters, we assume all consumers in period 1 observe s. In this way, our analysis examines
the extent to which the private information held by initial consumers, s, is successfully transmitted
to later consumers. There are at least two interpretations of this assumption: (i) early consumers
have greater access to information than later ones (e.g., initial advertising or “hands-on” promotions
spread information more widely early on); (ii) the market begins in the steady-state equilibrium de-
rived in Section 3. Under the second interpretation, our results here describe the short-run dynamics
of beliefs and market demand when price changes move the market out of the steady state. This
assumption also simplifies the analysis by ensuring that the seller does not have an informational
advantage over buyers, thereby neutralizing any incentive for the seller to use prices to signal quality
(see the discussion at the end of Section 2.1).22

Rational learning is straightforward. Since a continuum of agents act in each period, the aggre-
gate demand from the previous period fully reveals the signal when there is common knowledge of
F (and of rationality). While agents learn immediately in this rational benchmark, projectors do not

22While the assumption that all consumers in Generation 1 are privately informed simplifies the analysis in various
ways, it does not significantly influence the results. For instance, if a fraction λ < 1 of consumers observe s in each
period n = 1, 2, . . . and face a fixed exogenous price, then the environment corresponds to the dynamic analog of the
static model in Section 3: beliefs and behavior converge to the steady-state values described in Section 3.
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since they wrongly extract the signal as if it were common knowledge that T ∼ F̂ (·|ti).23

Below, we primarily focus on the two-period case where the intuitions are most transparent.
Within the two-period model, Section 4.1 first characterizes how beliefs and market demand evolve
under exogenously given prices; Section 4.2 then analyzes dynamic monopoly pricing. Section 4.3
describes how the key effects of projection extend beyond the two-period case.

4.1 Beliefs and Demand with Two Periods

We begin by analyzing the inferences of uninformed consumers in period 2 upon observing (p1, d1).
Here, we take p1 to be any price such that (p1, s) admits interior demand.

In period 1, aggregate demand matches the rational benchmark: d1 = DI(p1; ω̄(s)) = 1 −
F (p1 − ω̄(s)).24 In period 2, an individual with taste t thinks that when buyers in period 1 have
expectations equal to ω̂, their demand is

D̂I(p1; ω̂|t) = 1− F̂ (p1 − ω̂|t) = 1− F
(
p1 − ω̂ − αt

1− α

)
. (9)

This individual will then infer a value of ω̂ that solves D̂I(p1; ω̂|t) = d1. Denoting this value by
ω̂2(t), the previous condition yields

ω̂2(t) = (1− α)ω̄(s) + α(p1 − t). (10)

Notice that the misinferences among observers in this dynamic context exhibit the same properties
described in Propositions 1 and 2 from the static model. Indeed, (10) exactly matches the steady-
state perceptions derived in Equation (8). These perceptions are decreasing in an observer’s taste,
increasing in the price, and give rise to perceived total valuations that exhibit too little heterogeneity.

Given these distortions in beliefs, we can further characterize how the market demand in period
2 under biased learning differs from that under and rational learning. In the rational case, this
demand would match that of informed consumers; i.e., DI(p2; ω̄(s)) = 1−F (p2− ω̄(s)). To derive
demand in the biased case, first notice that if we let ω̄2 ≡ (1 − α)ω̄(s) + αp1 denote the “taste-
independent” (mis)perception of ω̄(s) among uninformed consumers in period 2, then (10) implies
that the perceived total valuation of such a consumer with taste ti is u (ω̂2(ti), ti) = ω̄2 + (1− α)ti.

23 Although we assume agents observe the market outcome from only the previous period, this data is sufficient
for rational agents to learn the signal. If biased agents were to observe longer histories of outcomes, they may see data
inconsistent with their misspecified models. This is because we assume there is a single signal in the market and no other
source of noise. We could alternatively avoid such inconsistencies by adding further sources of noise (e.g., prices or
demand subject to shocks), but this would significantly complicate the analysis while adding limited additional insight.

24 This follows from our assumption that all consumers in period 1 are informed (i.e., they observe s).
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The demand among uninformed consumers in period 2 is thus

DU(p2; ω̄2) ≡ Pr [u (ω̂2(T ), T ) ≥ p2] = 1− F
(
p2 − ω̄2

1− α

)
, (11)

and total demand is

D(p2; ω̄2, ω̄(s)) ≡ λDI(p2; ω̄(s)) + (1− λ)DU(p2; ω̄2). (12)

We can now show that the demand function in period 2 is locally more price-elastic than the
rational one (Johnson and Myatt, 2006). More specifically, it is a counter-clockwise rotation of the
rational one, and the rotation point is the market outcome from the previous period, (p1, d1).

Proposition 3. Suppose (p1, s) admits interior demand and consider any α > 0. The demand curve

in the second period under biased learning, D(p2; ω̄2, ω̄(s)), is a counter-clockwise rotation of the

demand curve under rational learning, DI(p2;ω(s)), about the point (p1, d1).

It is clear that α > 0 implies that DU(p2; ω̄2)—and thus D(p2; ω̄2, ω̄(s))—is more sensitive to
p2 than the demand among rational observers with the same beliefs (see Figure 2). The rationale
builds from intuitions developed in the static case: in period 2, perceptions of ω̄(s) are declining in
consumers’ private values, and the buyer with a private value equal to that of the marginal type from
period 1, denoted t∗1, is the unique uninformed type who infers ω̄(s) correctly. Those with t > t∗1

see a weaker demand in period 1 than anticipated given ω̄(s) and consequently underestimate ω. In
contrast, those with t < t∗1 see a stronger demand than anticipated given ω̄(s) and overestimate ω.

An implication of Proposition 3 is that, relative to the rational benchmark, the demand in period
2 overreacts to price changes. If p2 > p1, then only those types with overly pessimistic beliefs
will be served in period 2, and the quantity demanded will thus fall below the rational benchmark
at p2. If p2 < p1, then those with overly optimistic beliefs will be served—the marginal type will
be among this contingent—and hence the quantity demanded will exceed the rational benchmark.
Social learning under taste projection therefore offers a novel explanation for overreaction to price
changes, thereby complementing other existing—yet conceptually distinct—explanations. For in-
stance, a change in the price could momentarily increase attention or salience to the price (Bordalo
et al., 2013, 2020). Or consumers with a “taste for bargains” may experience additional elation when
buying at a price below some reference level (e.g., the previous price), thereby leading more to buy
when the new price feels like a “deal” (Jahedi, 2011; Armstrong and Chen, 2020).

4.2 Optimal Monopoly Pricing with Two Periods

We now analyze how a sophisticated seller optimally sets prices over time when facing taste-
projecting consumers. The seller chooses a price pn, n ∈ {1, 2}, at the start of each period to
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Figure 2: Demand functions of the informed and uninformed in period 2.

maximize profits
Π ≡ p1D

I(p1; ω̄(s)) + p2D(p2; ω̄2, ω̄(s)), (13)

subject to biased inferences given by the value ω̄2 characterized above.25 In order for the following
generation to draw a well-defined inference from the preceding one, we require the seller to serve
a positive fraction of consumers in each period. We operationalize this by imposing a price ceiling
that is arbitrarily close to the valuation of the highest informed type: p̄ ≡ ω̄(s) + t − κ for some
small κ > 0.26

Let p∗n denote the seller’s profit-maximizing price in period n. Under rational learning, all con-
sumers will correctly infer s, and the seller essentially faces an identical market of informed con-
sumers in each period. Let pM denote the static optimal monopoly price when facing informed
consumers. The optimal price path in the rational benchmark (i.e., α = 0) is to simply charge
p∗n = pM for all n. As we emphasize below, this is not so with projecting consumers (i.e., α > 0).

Taste projection among consumers introduces dynamic pricing incentives for the seller. Indeed,
since the current price inflates the beliefs of consumers in later periods, the seller may benefit from
increasing today’s price—at the cost of losing immediate sales—in order to increase perceptions
and demand among future consumers. The benefit from such manipulation is clearly suggested by
the distorted beliefs formed in Generation 2, as described in (10). The private value of the marginal

25 For simplicity, we abstract from the seller discounting future profits. Our results would continue to hold if the
seller exponentially discounted future profits with a discount factor δ ∈ (0, 1).

26 This price ceiling will have little effect on projectors’ beliefs and behavior since projectors can never be induced to
have a willingness to pay above the highest informed type. The price ceiling is also not consequential for our qualitative
results: the optimal price path still involves an inflated price in period 1 and a subsequent price reduction regardless of
whether p1 is at the ceiling or not. Furthermore, for every value of α, there exists a value λ̄ such that λ > λ̄ guarantees
an interior solution to the seller’s problem, rendering the ceiling irrelevant.
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type in Generation 1 determines the threshold in the taste distribution where ω̂2(t) switches from
overestimating quality to underestimating it. As this threshold is increasing in p1, a higher p1 will
result in a larger share of individuals in Generation 2 who overestimate quality.

But is it worthwhile for the seller to forego sales today in order to boost demand in the future?
The answer is unambiguously yes. To provide intuition, consider two pricing strategies: (i) constant
pricing, where p1 = p2 = pM , and (ii) declining prices such that p1 = pM + ε and p2 = pM − ε
for some ε > 0. The first strategy generates profits identical to the rational benchmark. While the
second strategy generates diminished sales in period 1 relative to the rational benchmark, it generates
a disproportionate expansion in period 2. This happens because the demand curve in Generation 2 is
a counter-clockwise rotation around p1 of the demand curve from the previous generation. Locally,
a small reduction of p2 below pM leads to a greater expansion in period-2 sales compared to the
contraction of period-1 sales induced by a commensurate increase of p1 above pM . This is because
those types who would have been submarginal in period 1 hold inflated perceptions; hence, a price
cut attracts an exaggerated share of consumers (as in Proposition 3). As a result, the profits gained
in period 2 more than offset those lost in period 1.27 This intuition holds more generally.

Proposition 4. Suppose that (pM , s) admits interior demand.

1. For any α > 0, we have p∗1 > pM and p∗1 > p∗2.

2. The seller’s profit under the optimal price path is increasing in α and decreasing in λ.

Intuitively, as α increases, there is greater scope to manipulate beliefs, thereby increasing the
seller’s profit above the rational benchmark. The seller’s profit is instead decreasing in λ: with fewer
uninformed agents in the market, it becomes more costly to deviate from the rational-benchmark
price. Additionally, although p∗1 always exceeds pM , the relationship between p∗2 and pM depends on
the degree of projection. When α is low and projectors’ beliefs are only mildly distorted by p1, the
seller optimally chooses p2 < pM to induce a large share of overoptimistic types to buy. When α is
high and beliefs are strongly distorted by p1, then even a p2 > pM can induce these types to buy.

Pricing under projection clearly harms consumers in period 1 since p∗1 > pM . But it also harms
some consumers in period 2: beliefs are manipulated in a way that leads some low-valuation con-
sumers to buy at a price they would refuse under rational learning. While some of this harm simply
represents a transfer to the seller, sufficiently strong projection can induce consumers who value the
good less than its cost (i.e., zero in this case) to buy it. This is clearly inefficient.

Proposition 5. Suppose that (pM , s) admits interior demand and consider the behavior of unin-

formed consumers in period 2.

27 By a similar logic, choosing p2 > p1 is particularly costly for the seller, as this would exclude optimistic consumers
while targeting just the pessimistic ones.
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1. For any α > 0, under the profit-maximizing price path, there exists a positive measure of types

who buy and overpay; for these types, ω̄(s) + t < p2.

2. If there exist types with truly negative valuations, i.e., ω̄(s) + t < 0, then there exists a

threshold α̃ such that for α > α̃ the profit-maximizing price path induces inefficient adoption:

there exists an interval of types t who buy despite ω̄(s) + t < 0.

An implication of this result is that the seller’s optimal pricing scheme always induces excessive
take-up among uninformed buyers, consistent with familiar notions of herding or bandwagon effects
in markets.28 Such excessive take-up indeed leads some uninformed consumers to overpay. Figure
3 shows the demand curves among informed (blue) and uninformed consumers (red) in period 2.
The demand curve among informed consumers, DI(p; ω̄(s)), reflects the rational valuation of the
marginal buyer for any level of market coverage d. The demand curve among uninformed con-
sumers, DU(p; ω̄2), instead reflects the willingness to pay of the marginal consumer given d. Thus,
for any d, the vertical gap between the red and blue curves reflects the wedge between the marginal
uninformed consumer’s willingness to pay and his true valuation. Manipulative pricing under pro-
jection causes a range of uninformed types to buy the good when they should, in fact, abstain given
p∗2: the rational level of demand at p∗2 is dI2, yet a market of projectors would demand a quantity
d2 > dI2. Projectors’ consumer surplus is no longer simply the area below their demand curve and
above the price, since all consumption beyond dI2 involves overpaying. Instead, projectors’ sur-
plus is the area above p∗2 yet below their valuation curve (area in blue) minus the area below p∗2 yet
above their valuation curve (area in red). Moreover, the dark red triangle displays a case where such
over-adoption is inefficient since consumers with negative valuations are lured into buying.

To further elucidate the pricing and welfare effects of projection, suppose T is uniform on [t, t].
In this case, the demands of informed and uninformed agents are

DI
(
p; ω̄(s)

)
=
ω̄(s) + t− p

t− t
and DU(p; ω̄2) =

ω̄2 + (1− α)t− p
(1− α)(t− t)

, (14)

respectively, where ω̄2 = (1− α)ω̄(s) + αp1. It is straightforward to show that the interior solution
is such that p∗1 > pM > p∗2. Panel (a) of Figure 4 shows how each p∗n changes with α.29 Intuitively,
p∗n → pM for both n = 1, 2 as α → 0. As α increases, p1 has a stronger positive effect on the
beliefs of Generation 2, and hence p∗1 increases in α. By contrast, p∗2 is not monotone in α. Since
the consumers who would be submarginal at p∗1 are those with inflated beliefs, p∗2 will necessarily
fall below p∗1. Moreover, when α is small, the perceived valuations of consumers in Generation 2

28 It is straightforward to show that the marginal uninformed type in period 2, t̂2, is strictly below the marginal
informed type, t∗2, and the interval of uninformed types who wrongly buy the good has measure t∗2− t̂2 =

α(p∗1−p
∗
2)

1−α > 0.
29In this example, t = 10, t = −10, ω̄(s) = 0. We plot outcomes for α ≤ 2/3 since this is the region that admits an

interior solution (shown in the figure). For α > 2/3, we necessarily have a corner solution at which the seller sets p1 at
the price ceiling (see footnote 26).
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Figure 3: Demand functions in period 2 (for both informed and uninformed agents).

exhibit near-rational levels of variation, so a reduction in p2 will not attract many more buyers than it
would under rational learning. Hence, there is little benefit in deviating from the rational monopoly
price. But as α increases, perceived valuations become more clustered around ω̄2, meaning that
a price drop will attract a bigger proportion of the market and will thus be more profitable. This
explains why p∗2 initially decreases in α. However, once α is sufficiently large—and thus beliefs
are substantially inflated due to a high p∗1—the seller can capture a significant fraction of the market
with a smaller deviation from pM .

While harming uninformed consumers, projection can actually increase total surplus when the
bias is not too severe. Indeed, total quantity demanded across both periods can be higher under pro-
jection than the rational benchmark. This reduces the traditional deadweight loss due to monopoly
pricing. However, this inflated level of sales can sometimes be detrimental to total surplus, since
sufficiently strong projection can induce inefficient over-consumption (as in Proposition 5). Panel
(b) of Figure 4 shows how total surplus changes as a function of α; total surplus begins to fall once
sales have expanded to the point where those with negative valuations are lured into buying.
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Figure 1: Effect of Projection on Total Surplus and Market Coverage.
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Figure 4: Optimal prices and the effect of projection on total surplus as a function of α

4.3 Beyond Two Periods

We now briefly consider how biased learning unfolds for longer horizons. Notably, we show for an
arbitrary number of periods that consumers’ beliefs continue to obey the central comparative statics
identified above: expectations of ω are decreasing in private tastes and increasing in past prices.

Inference among uninformed agents in any period n > 2 is similar to inference in the two-
period model with one marked difference. While the inferential error of consumers in Generation 2
stems directly from misunderstanding others’ tastes (i.e., an error in first-order beliefs), the mistaken
inference in later generations also includes a “social misinference” effect stemming from naivete
about others’ projection: individuals neglect that their predecessors failed to reach consistent beliefs.
Indeed, because uninformed consumers expect to extract s form their predecessors’ behavior, an
individual in period n accordingly thinks that the uninformed consumers in period n−1 consistently
and correctly inferred s. This presumption is false since projectors in period n − 1 formed biased,
taste-dependent beliefs. Nevertheless, an uninformed projector in Generation n with taste t thinks
the observed demand from Generation n − 1 is again determined by the (misperceived) informed
demand function D̂I(pn−1; ω̂|t) from (9)—she does not realize that it derives from a composition of
demand functions as in (12). This observer then infers a value of ω̂ that solves dn−1 = D̂I(pn−1; ω̂|t),
which we denote by ω̂n(t). Despite these additional complexities, our next proposition shows that
the key features of beliefs identified in the two-period model extend to any number of periods.

Proposition 6. Suppose (pn, s) admits interior demand for all n = 1, . . . , N , and consider any

α > 0. For each period n = 2, . . . , N and each type t ∈ T :

1. ω̂n(t) can be written as ω̂n(t) = ω̄n − αt, where ω̄n is independent of t.
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2. ω̄n is strictly increasing in each pk for k < n.

Part 1 of Proposition 6 implies that, in every period, a projector’s inferred quality is decreasing
in her private taste. Moreover, since the taste-independent component of beliefs in any period is
a sufficient statistic for a specific type’s belief, the evolution of beliefs of all types can be simply
summarized by the unidimensional process (ω̄n).

Part 2 of Proposition 6 shows that the biased perceptions in a given period n are increasing
in all past prices; hence, the manipulating effect of prices on the beliefs of projectors is amplified
compared to the static setting of Section 3. The proof further illustrates how the beliefs derived in
the static model correspond to the steady state of this dynamic model: if prices were held constant,
then ω̄n = ω̄2 for all n > 2 and thus ω̂n(t) matches the static belief in (8). Proposition 6 also implies
that prices in earlier periods have a long-lasting effect on beliefs. Relative to our analysis of optimal
monopoly pricing in the two-period model, this result adds a further incentive for the monopolist
to use a declining-price strategy. Online Appendix C shows that indeed such a strategy is optimal
for any arbitrary horizon when tastes are uniformly distributed, and we conjecture that this result
further generalizes given that the evolution of projectors’ beliefs displays the same properties as in
the two-period model. Intuitively, the seller balances a trade-off between manipulating the beliefs of
future consumers by maintaining a high current price versus exploiting consumers’ current beliefs
by undercutting the previous price.30

5 Further Applications and Extensions

In this section, we discuss further implications of taste projection when we relax our assumptions
that consumers (i) are short lived and (ii) have unit demand.

5.1 Endogenous Timing and Under-appreciation of Selection Effects

Section 4 showed how high-to-low pricing induces “short-lived” low-valuation projectors to exces-
sively adopt the good. We now show that such over-adoption arises even if the price is fixed when
consumers are “long-lived” and choose when to buy. Thus, the idea that projection causes consumers
to be overly influenced by earlier purchases is not limited to settings with changing prices.

Consider a variant of our dynamic model from Section 4 where, instead of a new mass of con-
sumers entering in the second period, there is a single group of consumers with unit demand who
can buy in either period (or not at all). We assume that the price p is fixed across periods. We addi-
tionally assume T is uniform to ease exposition, but the logic will transparently generalize. Finally,

30In this way, our model predicts a gradual decline in prices, which is consistent with the pattern observed for novel
products with uncertain quality; see Bayus (1992), Krishnan et al. (1999), and Liu (2010).
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a fraction λ ∈ (0, 1) of consumers observe s while 1− λ are uninformed.
Informed agents buy in period 1 or never, since they have nothing to learn from delaying; they

buy immediately if ω̄(s) + t ≥ p.31 Uninformed agents with low private values may defer their
purchase decision to period 2 in order to learn from those adopting in period 1. Specifically, an
uninformed agent buys in period 1 if ω̄0 + t ≥ p, where ω̄0 reflects the expected quality among
uninformed agents.32 Otherwise, they observe the quantity demanded in period 1, form an updated
expectation ω̂2(t), and then buy in period 2 if ω̂2(t) + t ≥ p.

The quantity demanded in period 1 is d1 = λD(p; ω̄(s)) + (1 − λ)D(p; ω̄0), where D(p;ω) =

1 − F (p − ω). As usual, a projecting agent in period 2 with taste t updates their belief to ω̂2(t),
which is the value ω̂ that fits their model to the observed outcome: ω̂ solves d1 = λD̂(p; ω̂|t) + (1−
λ)D̂(p; ω̄0|t), where D̂(p;ω|t) = 1−F̂ (p−ω|t). To state our next result, we impose some convenient
technical assumptions ensuring that under both rational and biased inference there are well-defined
marginal types in period 2, which we denote by t∗2 and t̂2, respectively. Namely, suppose that
D(p; ω̄0) ∈ (0, 1), D̂(p; ω̄0|t) > 0, and d1 ≤ λ + (1− λ)D̂(p; ω̄0|t). The first condition means that
an interior fraction of uninformed agents delay. The final two conditions mean that all projectors
expect an interior fraction to delay and the observed demand is consistent with their models; this
happens when λ is sufficiently large compared to α.

Proposition 7. Suppose (p, s) admits interior demand and λ > α > 0.

1. Suppose informed agents have positive information about the good; i.e., ω̄(s) > ω̄0. (i) The

quantity demanded in period 2 exceeds the rational benchmark, and the range of types who

suboptimally adopt,
[
t̂2, t

∗
2

]
, is increasing in both α and ω̄(s)−ω̄0. (ii) There exists a threshold

value t̃ > t∗2 such that all types t ∈
[
t̂2, t̃
]

will, on average, receive lower quality than they

expect; i.e., t < t̃ implies E[ω − ω̂2(t)|s] < 0.

2. Suppose informed agents have negative information about the good; i.e., ω̄(s) < ω̄0. Then

there is zero demand in period 2, as in the rational benchmark.

Proposition 7 stems from projectors underestimating a selection effect that naturally emerges
in this environment: consumers who decide to buy in period 1 tend to have higher private values
than those who delay. Those who delay are aware of this selection effect, but they underestimate it.
Since the delayers systematically underestimate the private values of those who buy early, they over-
attribute observations from period 1 to quality rather than differences in tastes. When d1 is stronger
than expected, delayers become too optimistic and too many of them buy—they are subsequently
disappointed by the quality they receive. When d1 is weaker than expected, delayers become too

31This relies on a mild (implicit) assumption that delaying consumption is costly to consumers.
32Our conclusions in this application would not change if ω̄0 were to depend on p—which might naturally occur if p

partially signals quality—so long as informed consumers have additional information that is not revealed by p.
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pessimistic and don’t buy. However, they would not buy based on this bad news even under rational
learning: since they were unwilling to buy with belief ω̄0, they are only willing to buy in period 2
if they receive good news. Hence, projection generates an asymmetric bias in behavior, leading to
over-adoption among delayers, but not under-adoption.

Additionally, insofar as unmet quality expectations drive negative product reviews, the fact that
over-adoption is coupled with systematic disappointment may explain why high initial reviews for
a product are too frequently followed by negative reviews (Li and Hitt, 2008; Papanastasiou et al.,
2015; Dai et al., 2018). Taste projection therefore provides a potential mechanism underlying the
sort of selection neglect suggested in this literature on learning from reviews.

5.2 Multi-Unit Demand

We now revisit the static equilibrium from Section 3 but allow consumers to have multi-unit demand.
As before, consumers still form type-dependent beliefs that are negatively related to their tastes.
In contrast to that previous case, however, projectors now fine-tune their actions to their erroneous
beliefs. Thus, all projecting types generically consume a sub-optimal amount in equilibrium, leading
to potentially large inefficiencies. In particular, since perceptions are negatively related to tastes,
high types underconsume while low types overconsume.33

For simplicity, we consider the familiar case of quadratic utility (e.g., Judd and Riordan, 1994;
Caminal and Vives, 1996), where a consumer’s valuation for x units of the good is given by u(x;ω, t) =

(ω+t)x−x2/2. A consumer with a quality expectation of ω̂ facing a per-unit price of p then demands
a quantity x∗(p; ω̂, t) = ω̂ + t− p if ω̂ + t− p ≥ 0 and x∗(p; ω̂, t) = 0 otherwise.

As in Section 3, a fraction λ ∈ (0, 1) of consumers observe s and form a quality expectation
ω̄(s). The remaining fraction 1 − λ form this expectation based on the aggregate demand at price
p. The steady-state equilibrium is analogous to the one defined above: uninformed agents make
inferences that are consistent with the observed quantity demanded and their misspecified model,
and the resulting quantity is consistent with those beliefs. More specifically, let ω̂(t) be type t’s
quality expectation in equilibrium. Aggregate demand in equilibrium is thus

d = λ ·
∫
T
x∗
(
p; ω̄(s), t

)
dF (t)︸ ︷︷ ︸

Informed Demand

+ (1− λ) ·
∫
T
x∗
(
p; ω̂(t), t

)
dF (t)︸ ︷︷ ︸

Uninformed Demand

. (15)

Since uninformed agents expect that all types reach a common and correct expectation of ω in equi-
librium, each ω̂(t) is the value that predicts quantity d under type t’s model given the presumption

33Although this is intuitive given our earlier results on biased perceptions, it is nevertheless important to verify that
projection induces steady-state inefficiencies. The reason such inefficiencies were absent in Section 3 was merely an
artifact of the unit-demand structure.
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that all types have inferred this same value.

Proposition 8. Suppose (p, s) admits positive aggregate demand among informed consumers. For

any α > 0, there exists a unique equilibrium profile of beliefs ω̂(t) with the following properties:

1. Quality perceptions are negatively related to tastes: ω̂(t) is strictly decreasing in t.

2. Relative to the rational benchmark, high types demand too little and low types demand too

much: there exists an interior threshold type t̃ such that t > t̃ implies x∗
(
p; ω̂(t), t

)
<

x∗
(
p; ω̄(s), t

)
and t < t̃ implies x∗

(
p; ω̂(t), t

)
> x∗

(
p; ω̄(s), t

)
.

3. Relative to the rational benchmark, demand along the extensive margin increases: the lowest

uninformed type who buys a positive quantity is lower than the lowest type who buys a positive

quantity in the rational benchmark.

4. More extreme types exhibit greater inefficiency:
∣∣x∗(p; ω̂(t), t

)
− x∗

(
p; ω̄(s), t

)∣∣ is strictly

increasing in |t− t̃|.

The intuition for Part 1 of Proposition 8 is identical to the unit-demand case. However, con-
sumers now tailor their individual demand to their idiosyncratic beliefs. This underlies Part 2: since
high types are typically pessimistic about the product’s quality, they consume too little; low types
instead consume too much. In this sense, consumption along the intensive margin is reduced, since
projection reduces the quantity demanded among the high types who consume the most. But con-
sumption along the extensive margin increases (Part 3). That is, the set of types who consume the
good in equilibrium expands: some low types who would entirely abstain under rational inference
are now persuaded to buy the product. Parts 2 and 3 together imply that, relative to the rational
benchmark, consumption is spread more thinly across a wider range of buyers.

The logic behind these results is quite transparent as α → 1. In this case, projectors think
there is essentially no heterogeneity in tastes, and that aggregate demand derives from all individ-
uals consuming roughly the same quantity. From a projector’s point of view, the average quantity
demanded is then a near perfect signal about how much he himself should consume—he should
consume that same amount, since he is just like everybody else. Thus, in equilibrium, the difference
in consumption across types narrows, while the set of types who consume expands.

Finally, among the segment of consumers who buy in equilibrium, those with types closer to
the extremes make worse decisions (Part 4). Intuitively, these types are farther from the average
buyer, and thus their mental model provides a worse interpretation of the data. A truly average
projecting consumer is fairly accurate when she imagines that most people share her tastes. But
those with more extreme tastes hold a more distorted model of the world by assuming their tastes
are typical. Proposition 8, along with the results of Section 4, reveal that where the burden of
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projection falls depends on the demand structure: with single-unit demand, it is only low types who
can be manipulated into inefficiently adopting a product; with multi-unit demand, the burden falls
on extreme types, either high or low.

6 Discussion and Conclusion

Evidence suggests that people often misperceive others’ tastes, attitudes, and motives by exaggerat-
ing the similarity between others and themselves. In this paper, we have examined a model where
consumers interpret market data through the lens of these misperceptions. In contexts where con-
sumers aim to learn the commonly-valued quality of a product from others’ demand, we showed that
projection leads to systematically distorted beliefs. Namely, projecting consumers will form quality
estimates that are decreasing in their tastes and increasing in the product’s price. These misinfer-
ences create new pricing incentives for a monopolist: in a dynamic setting, the seller will charge a
high initial price to inflate future consumers’ beliefs and then will lower the price to capitalize on
these distorted beliefs. Projection also has implications for efficiency. For instance, both dynamic
pricing and a failure to appreciate selection effects can lead projectors to inefficiently over-adopt a
good.34 We conclude with two lines of discussion. First, we note how our main results are robust to
generalizations of our model. Second, we discuss other potential applications of our model.

In order to streamline the analysis, we posited that a projector’s misperception of others’ tastes
is a convex combination of his own and others’ tastes, which implies that his perceived distribution
of types is a counter-clockwise rotation of the true distribution around his own type. Yet, our misin-
ference results are more general. In fact, directly assuming this rotation property would also deliver
many of our results.35 Our misinference results also extend to more general utility functions (see the
proofs of Propositions 1 and 2). Furthermore, for ease of exposition, we focused on a simple social-
learning environment where all informed agents observe the same signal. In Online Appendix B, we
show that our main comparative statics continue to hold under two richer information structures: (i)
“fully heterogeneous signals,” where each agent observes an independent private signal; (ii) “het-
erogeneous signals across periods,” where all agents within each period n observe a common signal
that is unobserved by agents in other periods. Similarly, while we have assumed that consumers’
private values are independently distributed, our model of taste projection can also accommodate
the case of correlated private values; see Gagnon-Bartsch et al. (2021a).

There are several other potential applications of our framework. As discussed above, projection

34 Note that our statements about efficiency implicitly disregard externatlities. Projection could be beneficial from a
social-welfare perspective when large-scale adoption is a critical objective (e.g., adoption of clean-energy technologies).

35 In a similar vein, a clockwise rotation of F would capture an opposing bias whereby a consumer thinks others’
tastes differ from his by more than they actually do. This assumption would reverse our results that stem from consumers
exaggerating the elasticity of demand; namely, it would imply quality perceptions that decrease in observed prices.
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leads to lower dispersion in consumers’ valuations and hence to a counter-clockwise rotation of
the market demand curve. The insights from Johnson and Myatt (2006) should therefore apply to
a market with projectors. For instance, in a setting where a monopolist engages in second-degree
price discrimination by offering a menu of multi-unit bundles, they show that a counter-clockwise
rotation of the demand curve can lead the seller to prefer a smaller menu. Thus, a seller should have
a similar preference when facing projecting consumers.

A natural extension of our framework would be to study the role of projection in markets with
multiple sellers. Consider a setting with a “dominant” firm and a competitive fringe of smaller
price-taking firms. Let the dominant firm act as the monopolist from our model above, while the
fringe firms supply a product of known quality ωf at price c ≥ 0. Furthermore, suppose that the
fringe product is inferior to the one supplied by the dominant firm and that all firms make positive
sales.36 In this extension, a projector’s belief about the quality of the dominant firm’s product would
still increase in its price and decrease in her own private taste. Moreover, projectors become more
optimistic about the quality of the dominant firm’s product the larger is the surplus they could obtain
from the fringe, (ωf−c). Intuitively, for a projector who is trying to learn the quality of the dominant
firm’s product from its demand, a given sales volume provides a more positive signal when the fringe
product is more appealing. Thus, we suspect that the misinference due to projection that we have
identified for a monopoly would still arise in some competitive settings.

Finally, projection may also distort an individual’s perception of her information sources. Sup-
pose consumers entertain the possibility that others are biased in favor of a particular option (e.g., a
particular brand, author, or politician), supporting it even when they know it has low quality. Even
when such blind support is absent in reality, projectors are prone to think it exists. This is because
a projector who tries the product and learns its true quality will then observe a puzzling degree of
popularity. For instance, a projector who despises an option will see far too many people (in her
eyes) supporting it. To make sense of this discrepancy, she may come to believe that others have
some ulterior motive, since she neglects that their support could come from mere differences in taste.
Such skepticism of others’ motives may lead people to discredit others’ actions, shedding light on
why some groups are unmoved by others’ actions even when they reveal valuable information.

36Specifically, consider a situation where consumers have weakly positive private values, and a consumer with taste
t values the fringe’s product at γt, with γ ∈ (0, 1).
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Appendix

A Proofs
Proof of Proposition 1. We prove this result for more general preferences than assumed in the main
text. Here, we assume that each agent’s valuation is given by a utility function u(ω, t) that is strictly
increasing and differentiable with respect to both variables and satisfies ∂2

∂ω∂t
u(ω, t) ≥ 0 for all

t ∈ T and ω ∈ R. For simplicity, we also assume u is linear in ω.37 Our model of projection
easily accommodates such a generalization: An agent with private value t believes the utility of any
agent with taste t′ is û(ω, t′|t) = αu(ω, t) + (1−α)u(ω, t′). This misperceived utility function then
pins down type t’s perceived distribution of valuations in each state ω. We begin by proving the
following lemma.

Lemma A.1. Consider any u satisfying the assumptions above, and suppose that (p, s) admits
interior demand. For any λ > 0 and α ∈ [0, 1), there exists a unique steady-state equilibrium; in
that equilibrium, the quantity demanded is equal to the quantity demanded in the full-information
benchmark (i.e., λ = 1).

Step 1: Inference rules. We first derive an uninformed agent’s inference from the observed
quantity demanded, d. Since we focus on symmetric strategies, it is sufficient to derive the inference
rule of an arbitrary agent with taste t. Let D̂(p; ω̂|t) denote this agent’s conjectured demand among
a population of agents who believe the expected value of ω is ω̂;

D̂(p; ω̂|t) = Pr

[
αu(ω̂, t) + (1− α)u(ω̂, T ) ≥ p

]
= Pr

[
u(ω̂, T ) ≥ p− αu(ω̂, t)

1− α

]
= Pr

[
T ≥ t∗

(
p− αu(ω̂, t)

1− α
; ω̂

)]
= 1− F

(
t∗
(
p− αu(ω̂, t)

1− α
; ω̂

))
, (A.1)

where t∗(p; ω̂) is the inverse of u(ω̂, t) w.r.t. t evaluated at ω̂ and p. That is, t∗(p; ω̂) is such that
u(ω̂, t∗(p; ω̂)) = p for all p ≥ 0 and ω̂ ∈ R. Note that t∗ is well defined given our assumptions on
u. Furthermore, let t∗1(p; ω̂) and t∗2(p; ω̂) denote the partial derivative of t∗ w.r.t. the first and second
argument, respectively; our assumptions on u also imply that for all p ≥ 0 and ω̂ ∈ R, we have
t∗1(p; ω̂) > 0 and t∗2(p; ω̂) < 0.

The inference rule of an uninformed agent with taste t is then given by the function ω̂(·|t, p) :
[0, 1]→ R such that for all d ∈ (0, 1), ω̂(d|t, p) is equal to the unique value of ω̂ that solves

d = 1− F
(
t∗
(
p− αu(ω̂, t)

1− α
; ω̂

))
, (A.2)

37The intuitions from the proof generalize beyond this risk-neutral case. However, we assume risk neutrality so that,
as in the main text, each agent’s mean belief, ω̂, is a sufficient statistic for their behavior irrespective of further details on
their posterior distribution over ω. Thus, as in the main text, uninformed agents here attempt to extract the mean belief
of informed agents, ω̄(s). The proof below holds without the linearity assumption when informed agents are perfectly
informed. And an analogous argument would hold beyond the linear case so long as we impose a similar structure on
an agent’s expected utility conditional on s and t.
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and ω̂(d|t, p) represents the agent’s perceived expected value of ω. An uninformed agent with taste
t buys if d is such that u (ω̂(d|t, p), t) ≥ p. The steady-state equilibrium condition is then:

d = λDI(p; ω̄(s)) + (1− λ) Pr [u (ω̂(d|T, p), T ) ≥ p] , (A.3)

where Pr [u (ω̂(d|T, p), T ) ≥ p] is the true fraction of uninformed agents who buy in the steady state.
Under our solution concept, a projecting agent with taste t believes that all agents (i) follow

the same inference rule as him; (ii) form an expectation of ω equal to ω̂(d|t, p); and (iii) take their
expected-utility-maximizing action given this expectation. He therefore believes that, in equilib-
rium, his inference rule allows him to perfectly extract the signal of the informed agents. To see
this, note that an agent with taste t thinks that demand among the informed is

D̂(p; ω̄(s)|t) = 1− F
(
t∗
(
p− αu(ω̄(s), t)

1− α
; ω̄(s)

))
, (A.4)

and thinks that

Pr [u (ω̂(d|T, p), T ) ≥ p] = Pr [u (ω̂(d|t, p), T ) ≥ p]

= 1− F
(
t∗
(
p− αu(ω̂(d|t, p), t)

1− α
; ω̂(d|t, p)

))
= d (A.5)

where the first equality follows because a projector with type t believes that all types infer the same
value as himself, ω̂(d|t, p), and the third equality follows from the fact that, by definition, ω̂(d|t, p)
is the value of ω̂ that solves (A.2). Thus, substituting (A.4) and (A.5) into (A.3) reveals that the
agent believes that, in equilibrium, the aggregate quantity demanded is such that

d = λ

(
1− F

(
t∗
(
p− αu(ω̄(s), t)

1− α
; ω̄(s)

)))
+ (1− λ)d

⇒ d = 1− F
(
t∗
(
p− αu(ω̄(s), t)

1− α
; ω̄(s)

))
. (A.6)

Within this agent’s model, both (A.5) and (A.6) must hold, and hence the agent believes

1− F
(
t∗
(
p− αu(ω̄(s), t)

1− α
; ω̄(s)

))
= 1− F

(
t∗
(
p− αu(ω̂(d|t, p), t)

1− α
; ω̂(d|t, p)

))
, (A.7)

which implies that ω̂(d|t, p) = ω̄(s) since ω̂(d|t, p) is the unique value of ω̂ that solves (A.2). Thus,
the projector’s inference rule would correctly identify ω̄(s) if his model were correct (but it’s not).

By this logic, this inference rule does correctly reveal the informed agents’ private informa-
tion when all agents are rational (i.e., α = 0), since in this case (A.7) reduces to t∗(p; ω̄(s)) =
t∗(p; ω̂(d|t, p)) and thus in reality we have ω̂(d|t, p) = ω̄(s) since t∗ is strictly decreasing in ω̂.

Step 2: ω̂(d|t, p) is strictly decreasing in t. Next, we show that ω̂(d|t, p) is strictly decreasing in
t. Recall that for any fixed d ∈ (0, 1), Condition (A.2) implies that ω̂(d|t, p) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂, t)

1− α
; ω̂

)
− F−1(1− d) = 0. (A.8)
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By the Implicit Function Theorem, we have

∂ω̂(d|t, p)
∂t

= −
(
∂L(ω̂|t, p)

∂t

)(
∂L(ω̂|t, p)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

. (A.9)

Notice that
∂L(ω̂|t, p)

∂t
= −t∗1

(
p− αu(ω̂, t)

1− α
; ω̂

)(
α

1− α

)
∂u(ω̂, t)

∂t
< 0, (A.10)

and

∂L(ω̂|t, p)
∂ω̂

= −t∗1
(
p− αu(ω̂, t)

1− α
; ω̂

)(
α

1− α

)
∂u(ω̂, t)

∂ω̂
+ t∗2

(
p− αu(ω̂, t)

1− α
; ω̂

)
< 0, (A.11)

and hence (A.9) implies that ∂ω̂(d|t,p)
∂t

< 0.
Step 3: Total perceived valuations, u(ω̂(d|t, p), t), are increasing in t. Although perceived

quality is decreasing in t (Step 2), total perceived valuations remain increasing in t. Notice that

du(ω̂(d|t, p), t)
dt

=
∂u(ω̂(d|t, p), t)

∂ω̂

∂ω̂(d|t, p)
∂t

+
∂u(ω̂(d|t, p), t)

∂t
, (A.12)

and thus du(ω̂(d|t,p),t)
dt

> 0 if

∂ω̂(d|t, p)
∂t

> −
(
∂u(ω̂, t)

∂t

)(
∂u(ω̂, t)

∂ω̂

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

. (A.13)

Substituting (A.10) and (A.11) into (A.9) implies that

∂ω̂(d|t, p)
∂t

= −
(
∂u(ω̂, t)

∂t

)(
∂u(ω̂, t)

∂ω̂
+K

)−1 ∣∣∣∣
ω̂=ω̂(d|t,p)

, (A.14)

where

K = −
(

1− α
α

)
t∗2

(
p− αu(ω̂, t)

1− α
; ω̂

)
︸ ︷︷ ︸

<0

(
t∗1

(
p− αu(ω̂, t)

1− α
; ω̂

))−1

︸ ︷︷ ︸
>0

∣∣∣∣
ω̂=ω̂(d|t,p)

, (A.15)

and hence (A.13) holds given that K ≥ 0. Note that K is strictly positive if α > 0 and hence
equilibrium total perceived valuations are strictly increasing in t under projection.

Step 4: The fraction of uninformed agents who buy follows a cutoff rule and is equal to frac-
tion of informed agents who buy. The equilibrium condition in (A.3) depends on the fraction of
uninformed agents who buy in the steady state, Pr [u (ω̂(d|T, p), T ) ≥ p]. Since Step 3 ensures that
u (ω̂(d|t, p), t) is strictly increasing in t, there must exist a threshold value t̂(d) such that, in equilib-
rium, types with with t ≥ t̂(d) buy and those with t < t̂(d) do not. That is, there is a well-defined
“marginal uninformed type”, t̂(d), that separates the type space into buyers and non-buyers.

We now show that, for any value of d ∈ (0, 1), it must be that t̂(d) = F−1(1 − d). That is, the
marginal uninformed type is such that the fraction of uninformed agents who buy is equal to d. To
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see this, the inference of an agent of any type t, ω̂(d|t, p), must satisfy

u

(
ω̂(d|t, p), t∗

(
p− αu(ω̂(d|t, p), t)

1− α
; ω̂(d|t, p)

))
=
p− αu(ω̂(d|t, p), t)

1− α
; (A.16)

this follows from the fact that, by definition, t∗(ũ; ω̂(d|t, p)) is the value of t such that u(ω̂(d|t, p), t) =
ũ. Furthermore, recall that for all t, the inference rule ω̂(d|t, p) is such that (A.8) holds as an identity;
substituting this identity into (A.16) and rearranging implies that

p = αu(ω̂(d|t, p), t) + (1− α)u
(
ω̂(d|t, p), F−1(1− d)

)
. (A.17)

Given that the condition above must hold for all t ∈ T , it must hold for type t̂(d) ≡ F−1(1 − d)
whose private value lies at the (1−d)-percentile in the taste distribution. Condition (A.17) evaluated
at t̂(d) = F−1(1− d) implies

p = αu
(
ω̂(d|t̂(d), p), F−1(1− d)

)
+ (1− α)u

(
ω̂(d|t̂(d), p), F−1(1− d)

)
= u

(
ω̂(d|t̂(d), p), t̂(d)

)
. (A.18)

Thus, an agent with type t̂(d) = F−1(1− d) forms an inference that leaves him indifferent between
buying or not. By Step 3, above, an agent with t > t̂(d) must form an inference yielding a strict
preference to buy, while one with t < t̂(d) must form an inference yielding a strict preference to not
buy. Thus t̂(d) represents the marginal uninformed type, and the fraction of uninformed agents who
buy is thus Pr [u (ω̂(d|T, p), T ) ≥ p] = 1− F

(
t̂(d)

)
= 1− F (F−1(1− d)) = d.

Recall from (A.3) that, in equilibrium, the aggregate quantity demanded must satisfy

d = λDI(p; ω̄(s)) + (1− λ) Pr [u (ω̂(d|T, p), T ) ≥ p] . (A.19)

From above, Pr [u (ω̂(d|T, p), T ) ≥ p] = d, and hence the equilibrium condition reduces to

d = λDI(p; ω̄(s)) + (1− λ)d ⇒ d = DI(p; ω̄(s)). (A.20)

This completes the proof of the lemma. We now establish each part of Proposition 1.
Part 1. Let ω̂(t) denote the steady-state inference of an uninformed agent who has taste t; that

is, ω̂(t) ≡ ω̂(d∗|t, p), where d∗ ≡ DI(p; ω̄(s)) is the quantity demanded in equilibrium. The fact
that ω̂(t) is strictly decreasing in t is established in Step 2 in the proof of Lemma A.1.

Recall from Step 4 of Lemma A.1 that the marginal uninformed type is t̂(d) = F−1(1 − d).
Since d = DI(p; ω̄(s)) = [1− F (t∗(p; ω̄(s)))] in equilibrium, we therefore have t̂(d) = t∗(p; ω̄(s))
in equilibrium. That is, the marginal uninformed type is equal to the marginal informed type. This
further implies that an uninformed agent with t = t∗(p; ω̄(s)) is the unique uninformed type who
correctly infers s: substituting t̂(d) = t∗(p; ω̄(s)) into (A.18) implies that this type forms an infer-
ence that leaves him indifferent between buying or not, which means that he must form the same
expectation as the informed agent who is truly indifferent; hence, ω̂(d|t∗(p; ω̄(s)), p) = ω̄(s) at the
equilibrium value of d. Since ω̂(t) is strictly decreasing in t, this implies that uninformed agents
with t > t∗(p; ω̄(s)) underestimate the state, while those with t < t∗(p; ω̄(s)) overestimate the state.

Part 2. We now argue that ω̂(t) is increasing in p for each t ∈ T . Condition (A.2) implies that
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ω̂(d|t, p) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂, t)

1− α
; ω̂

)
− F−1(1− d) = 0. (A.21)

In the steady-state, d = DI(p; ω̄(s)) = 1−F (t∗(p; ω̄(s))) and hence F−1(1− d) = t∗(p; ω̄(s)); the
preceding condition implies that ω̂(t) solves

L(ω̂|t, p) ≡ t∗
(
p− αu(ω̂, t)

1− α
; ω̂

)
− t∗(p; ω̄(s)) = 0. (A.22)

The Implicit Function Theorem then implies ∂ω̂(t)
∂p

= −
(
∂L(ω̂|t,p)

∂p

)(
∂L(ω̂|t,p)

∂ω̂

)−1
∣∣∣∣
ω̂=ω̂(t)

, and (A.11)

shows that ∂L(ω̂|t,p)
∂ω̂

< 0. Hence, ∂ω̂(t)
∂p

> 0 if and only if ∂L(ω̂|t,p)
∂p

∣∣
ω̂=ω̂(t)

> 0. Notice that

∂L(ω̂|t, p)
∂p

= t∗1

(
p− αu(ω̂, t)

1− α
; ω̂

)(
1

1− α

)
− t∗1(p; ω̄(s)). (A.23)

We first show that (A.23) is positive at the margin; i.e., for type t = t∗(p; ω̄(s)). In this case,
ω̂(t) = ω̄(s) and thus u(ω̂, t) = u(ω̄(s), t) = p, implying that t∗1

(
p−αu(ω̂,t)

1−α ; ω̂
)

= t∗1(p; ω̄(s)).
Hence, (A.23) is positive if and only if α > 0. To see why this condition must hold more generally,
let ω̂(t|p) denote the equilibrium perception of an agent with taste t facing price p, and consider p0

and p1 > p0. Let t∗0 ≡ t∗(p0; ω̄(s)). The preceding argument establishes that ω̂(t∗0|p1) > ω̂(t∗0|p0).
Furthermore, from Part 1, we know that ω̂(t|p) is strictly decreasing in t for each p ∈ {p0, p1}. Since
ω̂(t∗0|p1) > ω̂(t∗0|p0), we must have ω̂(t|p1) > ω̂(t|p0) for all t if ω̂(·|p0) and ω̂(·|p1) do not cross;
that is, if there exists no t̃ ∈ T such that ω̂(t̃|p1) = ω̂(t̃|p0). Toward a contradiction, suppose such
a t̃ exists, and let ω̃ = ω̂(t̃|p1) = ω̂(t̃|p0). By definition, ω̃ must rationalize the observed levels of
demand at prices p0 and p1. But this contradicts the fact that the agent must infer distinct estimates
of ω from these different levels of demand. Moreover, it is immediate that (A.23) is strictly positive,
as desired, for the functional form for u in the main text since it implies that t∗1 is a constant. �

Proof of Proposition 2. We prove this result for the more general class of utility functions intro-
duced at the beginning of the proof of Proposition 1 (i.e.,u(ω, t) is strictly increasing and differen-
tiable with respect to both variables, satisfies ∂2

∂ω∂t
u(ω, t) ≥ 0, and is linear in ω). Thus, the results

of the generalized version of Proposition 1 apply.
The random variable describing the valuations of the uninformed agents in the rational steady-

state equilibrium is v(T ) ≡ u(ω̄(s), T ). Under projection, this random variable is v̂(T ) ≡ u(ω̂(T ), T ).
We argue that v̂(·) is a clockwise rotation of v(·). First, note that v̂(t∗) = u(ω̂(t∗), t∗) = u(ω̄(s), t∗) =
v(t∗), which follows from the proof of Part 1 of Proposition 1 where we show that ω̂(t∗) = ω̄(s).
Thus, v and v̂ intersect at t∗. Next, for t > t∗, v̂(t) = u(ω̂(t), t) < u(ω̄(s), t) = v(t) since
ω̂(t) < ω̄(s) for t > t∗ given that ω̂(t) is strictly decreasing in t (as shown in Part 1 of Proposition
1). Similarly, for t < t∗, v̂(t) = u(ω̂(t), t) > u(ω̄(s), t) = v(t) since ω̂(t) > ω̄(s) for t < t∗, which
again follows from ω̂(t) being strictly decreasing in t. Thus, v̂ is a clockwise rotation of v. Since v
and v̂ are strictly increasing functions, this rotation property implies that v̂(T ) is less disperse than
v(T ) in the sense of the dispersion order defined by Shaked and Shanthikumar (2007) (see the end
of the proof of Proposition B.1 in Appendix B.1 for the definition of this order). Thus, by Theorem
3.B.16 of Shaked and Shanthikumar (2007), Var

(
v̂(T )

)
< Var

(
v(T )

)
. �
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Proof of Proposition 3. To show thatD(p2; ω̄2, ω̄(s)) is a counter-clockwise rotation ofDI(p2; ω̄(s))
about the point (p1, d1), we must show that: (i)D(p1; ω̄2, ω̄(s)) = DI(p1; ω̄(s)); (ii)D(p2; ω̄2, ω̄(s)) >
DI(p2; ω̄(s)) for all p2 < p1; and (iii) D(p2; ω̄2, ω̄(s)) < DI(p2; ω̄(s)) for all p2 > p1.

First, from (12), D(p1; ω̄2, ω̄(s)) = DI(p1; ω̄(s)) ⇔ DU(p1; ω̄2) = DI(p1; ω̄(s)). Since ω̄2 =
(1− α)ω̄(s) + αp1, substituting this value into (11) yields DU(p1; ω̄2) = 1− F (p1 − ω̄(s)), which
is identical to DI(p1; ω̄(s)). Next, note that D(p2; ω̄2, ω̄(s)) > DI(p2; ω̄(s)) ⇔ DU(p2; ω̄2) >
DI(p2; ω̄(s)), which is equivalent to F

(
p2−ω̄2

1−α

)
< F (p2 − ω̄(s)). Using the definition of ω̄2, the

preceding inequality can be written as

F

(
p2 − ω̄(s) +

α(p2 − p1)

1− α

)
< F (p2 − ω̄(s)). (A.24)

Thus, (A.24) implies that DU(p2; ω̄2) > DI(p2; ω̄(s)) if p2 < p1. It additionally implies that if
p2 > p1, then DU(p2; ω̄2) < DI(p2; ω̄(s)) and thus D(p2; ω̄2, ω̄(s)) < DI(p2; ω̄(s)). �

Proof of Proposition 4. Part 1. The seller’s objective is

max
p1,p2

Π(p1, p2;α, λ), (A.25)

subject to the dynamic constraint ω̄2 = αp1 + (1− α)ω̄(s). Note that

Π(p1, p2;α, λ) = p1D1(p1; ω̄(s)) + p2D2(p2; ω̄2, ω̄(s)), (A.26)

where, from Equation (12), we have

D1(p1; ω̄(s)) = DI(p; ω̄(s)), (A.27)
D2(p2; ω̄2, ω̄(s)) = λDI(p2; ω̄(s)) + (1− λ)DU(p2; ω̄2), (A.28)

with DI(p; ω̄(s)) = 1− F (p− ω̄(s)) and DU(p; ω̄2) = 1− F
(
p−ω̄2

1−α

)
.

Potential Cases and Outline. We first describe the potential mix of interior and corner solutions
and argue which of these are possible at the optimum. Then, for each possible case, we proceed to
show that p∗1 > pM and p∗1 > p∗2.

Fixing s, let v = ω̄(s) + t and v = ω̄(s) + t denote the expected valuations of the lowest and
highest informed types, respective. The set of valuations among informed types is thus V = [v, v].
As a function of p1, an uninformed consumer’s valuation in period 2 is (1 − α)(ω̄(s) + t) + αp1.
Notice that at any optimum, p1 ∈ [v, p̄], where, recall, the price ceiling is p̄ = v − κ for some κ > 0
arbitrarily small such that p̄ > pM . Hence, given p1 and α > 0, the set of valuations of uninformed
consumers in period 2, denoted V̂ ≡ [(1− α)v + αp1, (1− α)v + αp1], is a strict subset of V .

First, notice that it is never optimal for the seller to serve all consumers in period 1. Since
(pM , s) admits interior demand, it is not optimal to serve all consumers in the rational benchmark;
moreover, doing so under projection leads to the least attractive distribution of perceived valuations
in period 2. Hence, in period 1 we either have an interior solution or a price equal to the price
ceiling: p∗1 ∈ (v, p̄].

Now consider possible corner cases in period 2. Since the valuations of uninformed types are a
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strict subset of the valuations of informed types, demand in period 2 is D2(p; ω̄2; ω̄(s)) =
λDI(p; ω̄(s)) + (1− λ) if p ∈ [v, (1− α)v + αp1),

λDI(p; ω̄(s)) + (1− λ)DU(p; ω̄2) if p ∈ [(1− α)v + αp1, (1− α)v + αp1],

λDI(p; ω̄(s)) if p ∈ ((1− α)v + αp1, p̄].

(A.29)

We now argue that the seller will never operate strictly within the first or third region of the
demand function above, but may operate at the corner pc2 ≡ (1−α)v+αp1 at which all uninformed
types are served. First consider the third region. It is clearly sub-optimal to serve only informed
types in period 2 since the strategy p1 = p2 = pM yields the seller the rational static monopoly
profit in each period. Thus, deviating from these prices would require the seller to strictly benefit
by serving consumers with manipulated beliefs, which is not possible when serving only informed
types. Now consider the interior of the first region, where the seller sets a price below the lowest
perceived valuation of uninformed types. This cannot happen at the optimum since it involves using
p1 to inflate the beliefs of uninformed types to an inefficient extent: since all uninformed types
strictly prefer to buy at p2 given ω̄2, a slight reduction in p1 would have no effect on the demand
of the uninformed (or informed) agents in period 2 but would strictly increase the seller’s profit in
period 1. Thus, p∗2 ≥ pc2 and in period 2 we either have an interior solution (in the middle region of
A.29) or the corner solution such that p∗2 = pc2.

Next, we show that p∗1 > pM and p∗1 > p∗2 in any of the possible cases noted above (i.e., interior
or ceiling in period 1, and interior or corner in period 2).

Case 1: Interior Solutions. Substituting the dynamic constraint into D2 in (A.28), the first-order
conditions of (A.25) are:

∂

∂p1

p1D1(p1; ω̄(s)) + p2
∂

∂ω̄2

D2(p2; ω̄2, ω̄(s))
∂ω̄2

∂p1

= 0 and
∂

∂p2

p2D2(p2; ω̄2, ω̄(s)) = 0. (A.30)

Define the following functions, each corresponding to the price derivative of the seller’s profit in
period n with respect to pn for n = 1, 2:

M1(p; ω̄(s)) ≡ ∂

∂p
pD1(p; ω̄(s)) and M2(p; ω̄2, ω̄(s)) ≡ ∂

∂p
pD2(p; ω̄2, ω̄(s)). (A.31)

Substituting these expressions along with the relevant derivatives into the FOCs in (A.30) yields:

M1(p1; ω̄(s)) + p2

(
α(1− λ)

1− α

)
f

(
p2 − ω̄2

1− α

)
= 0, (A.32)

M2(p2; ω̄2, ω̄(s)) = 0. (A.33)

Step 1: p∗1 > pM . Since (pM , s) admits interior demand under rational inference and since f
being log-concave implies that F has an increasing hazard rate, M1 is strictly decreasing in p and
has exactly one root at pM > 0. Note that FOC (A.32) implies that p∗1 solves

M1(p∗1; ω̄(s)) = −p∗2
(
α(1− λ)

1− α

)
f

(
p∗2 − ω̄2

1− α

)
, (A.34)
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where the right-hand side is strictly negative at an interior solution whenever α > 0. Thus, since M1

is decreasing in p and M1(pM ; ω̄(s)) = 0, we must have p∗1 > pM .
Step 2: p∗2 < p∗1. FOC (A.33) implies that p∗2 solves M2(p∗2; ω̄2, ω̄(s)) = 0. Toward a contradic-

tion, suppose that p∗2 = p∗1. We argue that M2(p∗1; ω̄2, ω̄(s)) < M1(p∗1; ω̄(s)). Note that

M2(p; ω̄2, ω̄(s)) = D2(p; ω̄2, ω̄(s))− p
[
λf(p− ω̄(s)) +

(
1− λ
1− α

)
f

(
p− ω̄2

1− α

)]
. (A.35)

At p = p∗1, we have ω̄2 = (1 − α)ω̄(s) + αp∗1 and (p − ω̄2)/(1 − α) = p∗1 − ω̄(s), which fur-
ther implies that D2(p∗1; ω̄2, ω̄(s)) = 1 − F (p∗1 − ω̄(s)) = D1(p∗1; ω̄(s)). Thus, evaluating M2 at
p = p∗1 yields M2(p∗1; ω̄2, ω̄(s)) = D1(p∗1; ω̄(s)) − p∗1f(p∗1 − ω̄(s))

(
1−αλ
1−α

)
. However, note that

M1(p∗1; ω̄(s)) = D1(p∗1; ω̄(s)) − p∗1f(p∗1 − ω̄(s)), and thus M2(p∗1; ω̄2, ω̄(s)) < M1(p∗1; ω̄(s)) if
and only if −p∗1f(p∗1 − ω̄(s))

(
1−αλ
1−α

)
< −p∗1f(p∗1 − ω̄(s)), which holds for any α > 0. How-

ever, this presents a contradiction: since M1(p∗1; ω̄(s)) < 0 by FOC (A.32), M2(p∗1; ω̄2, ω̄(s)) <
M1(p∗1; ω̄(s)) ⇒ M2(p∗1; ω̄2, ω̄(s)) < 0, which violates FOC (A.33). Thus, if M2(p; ω̄2, ω̄(s)) is
decreasing in p, we must have p∗2 < p∗1 in order for both FOCs to hold. To complete the proof, we
only need to show that M2(p; ω̄2, ω̄(s)) is decreasing in p.

Step 3: M2 is decreasing in p. Notice that

M2(p; ω̄2, ω̄(s)) = λ

[
∂

∂p
pDI(p; ω̄(s))

]
︸ ︷︷ ︸

≡MI(p;ω̄(s))

+(1− λ)

[
∂

∂p
pDU(p; ω̄2)

]
︸ ︷︷ ︸

≡MU (p;ω̄2)

= λM I(p; ω̄(s)) + (1− λ)MU(p; ω̄2). (A.36)

It is immediate that M I(p; ω̄(s)) = M1(p; ω̄(s)) and is hence decreasing in p. We can also show
that MU is decreasing in p given our assumptions on F . The following Lemma establishes this.

Lemma A.2. Suppose the family of distributions {F (x− ω̄)}ω̄∈R is such that for any ω̄(s),
M I(p; ω̄(s)) ≡ ∂

∂p
p[1 − F (p − ω̄(s))] is decreasing at all p such that F (p − ω̄(s)) ∈ (0, 1). Then

for any α ∈ [0, 1) and ω̄2 ∈ R, MU(p; ω̄2) ≡ ∂
∂p
p[1 − F (p−ω̄2

1−α )] is decreasing at all p such that
F (p−ω̄2

1−α ) ∈ (0, 1).

We now prove Lemma A.2. Consider an arbitrary value of ω̄(s) ∈ R. Notice thatM I(p; ω̄(s)) =
1−F (p− ω̄(s))− pf(p− ω̄(s)), and hence the assumption of the lemma implies ∂

∂p
M I(p; ω̄(s)) <

0⇔ −f(p− ω̄(s))− f(p− ω̄(s))− pf ′(p− ω̄(s)) on the relevant domain, which is equivalent to

− 2f(p− ω̄(s))− pf ′(p− ω̄(s)) ≤ 0 (A.37)

for all ω̄(s) (and strictly so for p − ω̄(s) on the interior of the support of F ). Now note that
MU(p; ω̄2) ≡ ∂

∂p
p[1 − F (p−ω̄2

1−α )] = 1 − F (p−ω̄2

1−α ) − pf(p−ω̄2

1−α ) 1
1−α . To show that MU(p; ω̄(s)) is

decreasing in p, note that ∂
∂p
MU(p; ω̄2) = −2f

(
p−ω̄2

1−α

)
1

1−α − pf
′ (p−ω̄2

1−α

)
1

(1−α)2
. The previous ex-

pression is weakly negative if and only if

− 2f

(
p− ω̄2

1− α

)
− pf ′

(
p− ω̄2

1− α

)
1

(1− α)
≤ 0. (A.38)
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Under a change of variables with p̃ = p
1−α and ω̃ = ω̄2

1−α , the previous condition is equivalent to

− 2f(p̃− ω̃)− p̃f ′(p̃− ω̃) ≤ 0. (A.39)

This condition is equivalent to Condition (A.37), which holds by assumption. Furthermore, Condi-
tion (A.37) additionally implies that Condition (A.39) holds with a strict inequality when p−ω̄2

1−α is on
the interior of the support of F . This completes the proof of Lemma A.2.

Since F satisfies the assumption of Lemma A.2 (because log-concavity of f implies that F
has an increasing hazard rate), MU is decreasing and thus M2 is decreasing since it is the convex
combination of decreasing functions. This completes Case 1.

Case 2: p∗1 = p̄. Suppose the optimal price in period 1 is the price ceiling. Then p∗1 > pM given
that p̄ > pM . To show p∗1 > p∗2, suppose that p∗2 = p̄ for a contradiction. Recall that if p1 = p2, then
DU(p2; ω̄2) = DI(p2; ω̄(s))⇒ D2(p2; ω̄2, ω̄(s)) = DI(p2; ω̄(s)). Thus, the seller’s total profit from
p∗1 = p∗2 = p̄ would be 2DI(p̄; ω̄(s)) < 2DI(pM ; ω̄(s)) since pM uniquely maximizes pDI(p; ω̄(s)).
Thus, p1 = p2 = pM is strictly preferred to p∗1 = p∗2 = p̄, contradicting the presumption that the
latter path is optimal. Thus, we must have p∗2 < p∗1.

Case 3: p∗1 interior yet p∗2 = pc2. In this case, p∗2 = pc2 = (1 − α)v + αp∗1. Note that p∗1 > p∗2 ⇔
p∗1 > v, which is true given that is sub-optimal to serve all consumers in period 1. Thus, we need to
show that p∗1 > pM when p∗1 is interior (the ceiling case is considered above). The seller chooses p∗1
to maximize p1D

I(p1; ω̄(s)) + pc2[λDI(p2; ω̄(s)) + 1− λ], yielding a FOC of

M1(p∗1; ω̄(s)) + α[λDI(pc2; ω̄(s)) + 1− λ− λpc2f(pc2 − ω̄(s))] = 0, (A.40)

and thus
M1(p∗1; ω̄(s)) + αλM1(pc2; ω̄(s)) + α(1− λ) = 0. (A.41)

Recall that M1(pM ; ω̄(s)) = 0 and M1(p; ω̄(s)) > 0 for all p < pM . Thus, since pc2 < p∗1, if
p∗1 ≤ pM , then M1(p∗1; ω̄(s)) + αλM1(pc2; ω̄(s)) > 0, contradicting the FOC above. This completes
the proof of Part 1.

Part 2. Effect of α. First consider the case in which p∗1 and p∗2 are interior solutions to the
optimization program in (A.26). From the Envelope Theorem, ∂p

∗
n

∂α
= 0 for n = 1, 2, and hence

∂

∂α
Π(p1, p2;α, λ) = −p∗2

[
λf(t∗2)

∂t∗2
∂α

+ (1− λ)f
(
t̂2
) ∂t̂2
∂α

]
, (A.42)

where we’ve defined t∗2 ≡ p2 − ω̄(s) and t̂2 ≡ p∗2−(1−α)ω̄(s)−αp∗1
1−α . Since t∗2 is the marginal informed

type, ∂t
∗
2

∂α
= 0. Now note that

∂t̂2
∂α

=
(1− α)[ω̄(s)− p∗1] + [p∗2 − (1− α)ω̄(s)− αp∗1]

(1− α)2
= − p∗1 − p∗2

(1− α)2
. (A.43)

Substituting these values back into (A.42) yields

∂

∂α
Π(p1, p2;α, λ) = (1− λ)p∗2f

(
p∗2 − (1− α)ω̄1 − αp∗1

1− α

)[
p∗1 − p∗2
(1− α)2

]
. (A.44)

Since λ < 1, the expression above is positive whenever p∗1 > p∗2, which is true by Part 1 of this
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proposition. The case in which p∗1 = p̄ and p∗2 is interior yields for ∂
∂α

Π(p1, p2;α, λ) an expression
that is identical to expression (A.44). Finally, consider the case in which p∗2 = pc2 = (1− α)v+ αp1

(i.e., the corner case described in Part 1 in which all uninformed types are served in period 2). In
period 1, the seller chooses p1 to maximize

Πc(p1;α, λ) = p1[1−F (p1− ω̄(s))] + [(1−α)v+αp1]

[
1−λF ((1−α)v+αp1− ω̄(s))

]
. (A.45)

Note that this profit function accounts for the fact that all uninformed types buy in period 2. Let p∗1
be the value of p1 that maximizes the expression above, and let pc2(p∗1) ≡ (1−α)v+αp∗1. For either
an interior value of p∗1 or p∗1 = p̄, we have

∂Πc(p1;α, λ)

∂α
= (p∗1− v)

[
1− λF (pc2(p∗1)− ω̄(s))

]
− pc2(p∗1)λf

(
pc2(p1)− ω̄(s)

)
(p∗1− v); (A.46)

thus, ∂
∂α

Πc(p1;α, λ) > 0 if and only if [1− λF (pc2(p∗1)− ω̄(s))] − pc2(p∗1)λf (pc2(p∗1)− ω̄(s)) > 0.
The previous condition must hold given that we are focusing on the case in which all uninformed
types are served: as argued above, it is optimal to set the highest possible price in the first region of
D2 in (A.29), and hence the previous inequality must hold for all p2 ≤ (1− α)v + αp1.

Effect of λ. Similar to the approach above, if p∗2 is interior and either p∗1 is interior or p∗1 = p̄,
then we have

∂

∂λ
Π(p1, p2;α, λ) = p∗2

[
−F (t∗2) + F

(
t̂2
)]
, (A.47)

where neither t∗2 nor t̂2 depend on λ. This expression is negative whenever t̂2 < t∗2. Notice that

t̂2 =
p∗2 − (1− α)ω̄(s)− αp∗1

1− α
= p∗2 − ω̄(s)− α

1− α
[p∗1 − p∗2] = t∗2 −

α

1− α
[p∗1 − p∗2]. (A.48)

Since α > 0, t̂2 < t∗2 ⇔ p∗1 − p∗2 > 0, which is again true by Part 1 of this proposition. If instead we
have a corner solution in period 2, then the profit function is as in (A.45) and

∂Πc(p1;α, λ)

∂λ
= −pc2(p∗1)F

(
pc2(p1)− ω̄(s)

)
, (A.49)

which is clearly negative. �

Proof of Proposition 5. Part 1. Consider the optimal price pair (p∗1, p
∗
2). Let t∗2 ≡ p∗2− ω̄(s) denote

the marginal informed type in period 2, and and let t̂2 ≡ p∗2−ω̄2

1−α denote the marginal uninformed type.
Note that if t̂2 < t∗2, then the interval of types who adopt the good in period 2 at a price above their
true expected valuation is [t̂2, t

∗
2]. From (A.48), we have t∗2 − t̂2 = α

1−α [p∗1 − p∗2]. Since p∗1 − p∗2 > 0

for all α > 0 (by Proposition 4 Part 1), we know that t̂2 < t∗2. Thus, the width of the interval of
types who wrongly adopt is t∗2 − t̂2 = α

1−α [p∗1 − p∗2], which is strictly positive.
Part 2. Suppose that ω̄(s) + t < 0. We show that an α sufficiently large will induce the seller

to set the “corner” price in period 2 at which all uninformed types are served. Recall from the proof
of Proposition 4 that this price is pc2 = (1 − α)v + αp1, where v = ω̄(s) + t. We will show that
the price derivative of the period-2 profit function is necessarily negative at pc2 for α sufficiently
large, implying that p∗2 = pc2, and thus that all uninformed types are served. To this end, denote the
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period-2 profit by

Π2(p2; p1) = p2

(
1− λF (p2 − ω̄(s))− (1− λ)F

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
. (A.50)

Hence, we have

∂Π2(p2; p1)

∂p2

=

(
1− λF (p2 − ω̄(s))− (1− λ)F

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
− p2

(
λf(p2 − ω̄(s)) +

(1− λ)

(1− α)
f

(
p2 − (1− α)ω̄(s)− αp1

1− α

))
. (A.51)

To evaluate ∂Π2(p2;p1)
∂p2

∣∣
p2=pc2

, notice that p
c
2−(1−α)ω̄(s)−αp1

1−α = t. Since F (t) = 0, we have

∂Π2(p2; p1)

∂p2

∣∣∣∣
p2=pc2

= 1− λ
(
F (pc2 − ω̄(s))− pc2f(pc2 − ω̄(s))

)
− p2

c

(1− λ)

(1− α)
f (t) , (A.52)

and thus a sufficient condition for ∂Π2(p2;p1)
∂p2

∣∣
p2=pc2

< 0 is p2
c

(1−λ)
(1−α)

f (t) > 1. Since pc2 = (1 − α)v +

αp1, the previous sufficient condition is equivalent to

v +
α

(1− α)
p1 >

1

(1− λ)f(t)
. (A.53)

From Proposition 4 Part 1, we know that along the optimal price path, p1 > pM for all α > 0.
Hence, a sufficient condition for (A.53) is

v +
α

(1− α)
pM >

1

(1− λ)f(t)
. (A.54)

The right-hand side of (A.54) is positive and finite given that f is positive on T . Thus, since pM > 0,
there exists α̃ ∈ (0, 1) such that v+ α̃

(1−α̃)
pM = 1

(1−λ)f(t)
. Then α > α̃ implies that Condition (A.54)

holds, and hence the seller chooses pc2 such that all uninformed types are served in period 2. �

Proof of Proposition 6. Part 1. We prove the claim by induction on n = 2, . . . , N . As argued in the
main text preceding Equation (11), ω̂2(t) = ω̄2 − αt for some ω̄2 independent of t. This establishes
the base case. Now suppose that in period n, ω̂n(t) = ω̄n − αt. The marginal uninformed type in
period n has taste t̂n such that ω̂n(t̂n)+t̂n = pn ⇒ t̂n = (pn−ω̄n)/(1−α) and thus aggregate demand
in period n is dn = λ

[
1 − F (pn − ω̄(s))

]
+ (1 − λ)

[
1− F

(
pn−ω̄n

1−α

)]
. An observer in generation

n + 1 then forms a perception of ω equal to ω̂n+1(t) such that dn = 1 − F̂ (pn − ω̂n+1(t)) =

1 − F
(
pn−ω̂n+1(t)−αt

1−α

)
⇒ ω̂n+1(t) = [pn − (1 − α)F−1(1 − dn)] − αt = ω̄n+1 − αt, where

ω̄n+1 ≡ pn − (1− α)F−1(1− dn) is independent of t.
Part 2. From the previous part, ω̂n(t) = ω̄n−αt, and thus the quantity demanded in each period

n, dn, can be written in terms of ω̄n analogously to expression (12):

dn = D(pn; ω̄n, ω̄(s)) ≡ λ
[
1− F (pn − ω̄(s))

]
+ (1− λ)

[
1− F

(
pn − ω̄n
1− α

)]
. (A.55)

44



An uninformed consumer in period n + 1 with taste t thinks dn is determined by D̂I(pn; ω̂n+1(t)|t)
as in (9). Substituting ω̂n+1(t) = ω̄n+1 − αt into D̂I(pn; ω̂n+1(t)|t) implies that an uninformed con-
sumer in period n+ 1 thinks that dn is determined by the following function of ω̄n: D̂(pn; ω̄n+1) ≡
1 − F

(
pn−ω̄n+1

1−α

)
. Since the beliefs formed in n + 1 must be consistent with dn for all n ≥ 2, we

must have dn = D̂(pn; ω̄n+1). Hence, the law of motion describing the process (ω̄n) is characterized
by the condition

D̂(pn; ω̄n+1) = D(pn; ω̄n, ω̄(s)), (A.56)

starting from the initial condition of ω̄2 = (1− α)ω̄(s) + αp1.
We are now ready to prove the second part of the proposition. The statement is readily verified

for n = 2. For n ≥ 3, the proof proceeds in two steps. First, we will show that ω̄n is increasing in
pn−1. Second, we will show that ωn is increasing in ω̄n−1. Combining these two results then implies
that ω̄n is increasing in pk for all n ≥ 3 and k < n.

Step 1: ω̄n is increasing in pn−1. From Equation (A.56), ω̄n is the unique value that solves
D̂ (pn−1; ω̄n) = D (pn−1; ω̄n−1, ω̄ (s)), which is equivalent to

1− F
(
pn−1 − ω̄n

1− α

)
= λ [1− F (pn−1 − ω̄ (s))] + (1− λ)

[
1− F

(
pn−1 − ω̄n−1

1− α

)]
.

Solving this expression for ω̄n yields

ω̄n = pn−1 − (1− α)F−1

(
λF (pn−1 − ω̄ (s)) + (1− λ)F

(
pn−1 − ω̄n−1

1− α

))
. (A.57)

Differentiating (A.57) with respect to pn−1 then yields

∂ω̄n
∂pn−1

= 1− (1− α)

[
λf (pn−1 − ω̄ (s)) +

(
1−λ
1−α

)
f
(
pn−1−ω̄n−1

1−α

)
f
(
F−1

(
λF (pn−1 − ω̄ (s)) + (1− λ)F

(
pn−1−ω̄n−1

1−α

)))] . (A.58)

Let t∗n−1 := pn−1− ω̄ (s) and t̂n−1 := pn−1−ω̄n−1

1−α ; these denote the type of the marginal informed
and uninformed buyer in period n− 1, respectively. Also let

φn−1 (λ) ≡ f
(
F−1

(
λF
(
t∗n−1

)
+ (1− λ)F

(
t̂n−1

)))
− (1− α)λf

(
t∗n−1

)
− (1− λ) f

(
t̂n−1

)
.

Then Equation (A.58) implies that ∂ω̄n
∂pn−1

> 0⇔ φn−1 (λ) > 0.
Next, we show that the function φn−1 (λ) is strictly positive for any λ ∈ (0, 1]. Begin by noticing

that φn−1 (0) = 0 < αf
(
t∗n−1

)
= φn−1 (1). Moreover, we have

φ′n−1 (λ) =
f ′
(
F−1

(
λF
(
t∗n−1

)
+ (1− λ)F

(
t̂n−1

)))
f
(
F−1

(
λF
(
t∗n−1

)
+ (1− λ)F

(
t̂n−1

))) [F (t∗n−1

)
− F

(
t̂n−1

)]
− (1− α) f

(
t∗n−1

)
+ f

(
t̂n−1

)
. (A.59)

Notice that neither the sign of− (1− α) f
(
t∗n−1

)
+f

(
t̂n−1

)
nor that of F

(
t∗n−1

)
−F

(
t̂n−1

)
depend

on λ. Moreover, since f is log-concave, the ratio f ′

f
is decreasing. Hence, φ′n−1 (λ) can change sign
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at most once. Additionally, we have

φ′n−1 (λ)
∣∣
λ=0

=
f ′
(
t̂n−1

)
f
(
t̂n−1

) [F (t∗n−1

)
− F

(
t̂n−1

)]
− (1− α) f

(
t∗n−1

)
+ f

(
t̂n−1

)
and

φ′n−1 (λ)
∣∣
λ=1

=
f ′
(
t∗n−1

)
f
(
t∗n−1

) [F (t∗n−1

)
− F

(
t̂n−1

)]
− (1− α) f

(
t∗n−1

)
+ f

(
t̂n−1

)
.

Hence,

φ′n−1 (λ)
∣∣
λ=0
− φ′n−1 (λ)

∣∣
λ=1

=

[
f ′
(
t̂n−1

)
f
(
t̂n−1

) − f ′
(
t∗n−1

)
f
(
t∗n−1

) ] [F (t∗n−1

)
− F

(
t̂n−1

)]
.

The previous expression is strictly positive since F is increasing while f ′

f
is decreasing. Therefore,

φ′n−1 (λ)
∣∣
λ=0

> φ′n−1 (λ)
∣∣
λ=1

. Summing up: (i) φn−1 (·) is zero at λ = 0 and strictly positive at
λ = 1; (ii) for λ ∈ (0, 1), φ′n−1 (λ) can change sign at most once; (iii) φ′n−1 (λ) is greater at λ = 0
than at λ = 1. Hence, φn−1 (λ) > 0 for any λ ∈ (0, 1]. Thus, ∂ω̄n

∂pn−1
> 0.

Step 2: ω̄n is increasing in ω̄n−1. Differentiating (A.57) with respect to ω̄n−1 yields

∂ω̄n
∂ω̄n−1

=
(1− λ) f

(
pn−1−ω̄n−1

1−α

)
f
(
F−1

(
λF (pn−1 − ω (s)) + (1− λ)F

(
pn−1−ω̄n−1

1−α

))) .
The expression above is clearly positive for any λ ∈ (0, 1]. Hence, ω̄n is increasing in ω̄n−1. �

Proof of Proposition 7. Before proving the proposition, we characterize when a consumer buys
in either period, and the type of the marginal buyer in period 2 under both rational inference and
projection. In period 1, the quantity demanded is D1(p; ω̄(s)) = λ[1− F (p− ω̄(s))] + (1− λ)[1−
F (p − ω̄0)]. Now consider what an agent with taste t who delays will infer from observing this
quantity. They think that if informed agents expect a quality of ω̂, then the demand in period 1 is

D̂1(p; ω̂|t) = λ

[
1− F

(
p− ω̂ − αt

1− α

)]
+ (1− λ)

[
1− F

(
p− ω̄0 − αt

1− α

)]
. (A.60)

Equating D1(p; ω̄(s)) with D̂1(p; ω̂|t) allows us to solve for ω̂2(t), which denotes the perceived
quality of an uninformed agent with taste t who delays. Assuming T ∼ U(t, t), this solution is

ω̂2(t) =
α

λ

(
p− (1− λ)ω̄0 − t

)
+ (1− α)ω̄(s). (A.61)

The marginal type in period 2 under projection is the t̂2 that solves ω̂2(t̂2) + t̂2 = p, and hence

t̂2 = p−
[
λ(1− α)

λ− α

]
ω̄(s) +

[
α(1− λ)

λ− α

]
ω̄0. (A.62)

The marginal type in period 2 under rational inference is t∗2 = p − ω̄(s). Note that t̂2 < t∗2 if and
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only if

p−
[
λ(1− α)

λ− α

]
ω̄(s) +

[
α(1− λ)

λ− α

]
ω̄0 < p− ω̄(s) ⇔ ω̄(s) > ω̄0. (A.63)

Recall that the only types present in period 2 are those who did not buy in period 1; i.e., only those
with t ≤ tU1 ≡ p− ω̄0. Note that rational consumers in period 2 buy if and only if t∗2 < tU2 ⇔ ω̄(s) >
ω̄0. Condition (A.63) thus implies that the same is true under projection: t̂2 < tU2 ⇔ ω̄(s) > ω̄0;
hence, projectors in period 2 only buy when the quality is higher than expected.

Part 1. Suppose ω̄(s) > ω̄0. Under rational inference, the interval of types who buy in pe-
riod 2 is [t∗2, t

U
1 ]. Under projection, this interval is [t̂2, t

U
1 ], where t̂2 < t∗2 by (A.63). Hence,

the quantity demanded in period 2 under projection exceeds the rational benchmark. Moreover,
using the expressions above for t̂2 and t∗2, the interval of types who wrongly adopt the good is
t∗2 − t̂2 = (ω̄(s) − ω̄0)(α(1 − λ))/(λ − α). The measure of this interval is clearly increasing in α
and in ω̄(s)− ω̄0.

Now consider the set of types who buy in period 2 yet hold a quality expectation exceeding the
rational expectation, TO(s) ≡ {t ∈ [t̂, tU1 ] | ω̃2(t) > ω̄(s)}. This set represents the buyers who
overestimate quality and will, on average, be disappointed by buying ex post; that is, t ∈ TO(s) ⇒
E[ω − ω̂(t)|s] < 0. Let t̃ be the type in period 2 who infers correctly; i.e., ω̂2(t̃) = ω̄(s). From
(A.61), we have t̃ = p−λω̄(s)− (1−λ)ω̄0. Since ω̂2(t) is decreasing in t, ω̂2(t) > ω̄(s) for all t < t̃
and hence TO(s) = [t̂, t̃). Since ω̄(s) > ω̄0, we have t̃ ∈ (t∗2, t

U
1 ) given that λ ∈ (0, 1). In contrast to

rational learning, t̃ > t∗2 implies that some projecting buyers who correctly adopt the good (i.e., their
expected valuation exceeds the price) will systematically experience disappointment, on average.

Part 2. Suppose ω̄(s) < ω̄0. As discussed prior to Part 1, ω̄(s) < ω̄0 implies that no consumers
buy in period 2 under rational inference or under projection. Hence, outcomes in this case match
the rational benchmark. �

Proof of Proposition 8. Before proving the proposition, we derive some preliminary results on the
nature of uninformed agents’ biased inference rules and the equilibrium quantity demanded.

Let t∗ ≡ p− ω̄(s) be the marginal informed type (i.e., an informed type strictly prefers to buy a
positive quantity if and only if t > t∗). The aggregate demand of informed agents is then

DI(p; ω̄(s)) =

∫ t

t∗
x∗(p; ω̄(s), t)dF (t) = −[1− F (t∗)]t∗ +

∫ t

t∗
t̃f(t̃)dt̃ (A.64)

since x∗(p; ω̄(s), t) = ω̄(s)− p+ t. Let H(t) ≡ −[1− F (t)]t+
∫
t̃≥t t̃f(d)dt̃. Now consider the de-

mand function among agents with a quality expectation of ω̂ from the perspective of an uninformed
agent with taste t. This agent believes the marginal type is t̂ = p− ω̂, and hence perceives

D̂I(p; ω̂|t) = −[1− F̂ (t̂|t)]t̂+

∫ t(t)

t̂

t̃f̂(t̃|t)dt̃

= −
[
1− F

(
t̂− αt
1− α

)]
t̂+

∫ t(t)

t̂

t̃
1

1− α
f

(
t̃− αt
1− α

)
dt̃. (A.65)

Consider a change of variables with x = t̃−αt
1−α . Recalling that t(t) = αt + (1 − α)t, expression
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(A.65) can be re-written as

D̂I(p; ω̂|t) = −
[
1− F

(
t̂− αt
1− α

)]
t̂+

∫ t

t̂−αt
1−α

[αt+ (1− α)x]f (x) dx

= −
[
1− F

(
t̂− αt
1− α

)]
[t̂− αt] + (1− α)

∫ t

t̂−αt
1−α

xf (x) dx

= (1− α)H

(
t̂− αt
1− α

)
, (A.66)

where H is defined below (A.64).
An uninformed projecting agent’s inference rule, ω̂(d|t), is obtained by finding the perceived

marginal type t̂(d|t) that solves D̂I(p; ω̂|t) = (1−α)H
(
t̂−αt
1−α

)
= d, and then setting ω̂(d|t) = p− t̂.

We now use the Implicit Function Theorem to show that a projector’s biased inference rule is linearly
decreasing in t with slope α.

Let L(x; d) = (1 − α)H(x) − d. Note that an agent infers a marginal type t̂(d|t) equal to the
value of t̂ that solves L

(
t̂−αt
1−α ; d

)
= 0. Thus,

∂t̂(d|t)
∂t

= −
(
∂

∂t
L

(
t̂− αt
1− α

; d

))(
∂

∂t̂
L

(
t̂− αt
1− α

; d

))−1 ∣∣∣∣
t̂=t̂(d|t)

= −
(
− α

1− α

)(
1

1− α

)−1 ∣∣∣∣
t̂=t̂(d|t)

= α.

Since ω̂(d|t) = p− t̂(d|t), ∂
∂t
ω̂(d|t) = −α. Thus, we can write any uninformed type’s inferred value

of ω̄(s) upon observing aggregate demand as ω̂(d|t) = ω̃(d) − αt, where ω̃(d) is independent of
t. While we will not explicitly solve for ω̃(d) (which will depend on F and α), we now argue that,
in equilibrium, the aggregate quantity demanded by uninformed agents is equal to the aggregate
quantity demanded by informed agents. To see this, we first derive the aggregate quantity demanded
by uninformed agents. Since ω̂(d|t) = ω̃(d) − αt, an uninformed type t will demand ω̃(d) − p +
(1− α)t units. Thus, the truly marginal type among uninformed agents is t̂ = (p− ω̃(d))/(1− α),
and the aggregate demand among uninformed types is

DU(p; ω̃(d)) =

∫ t

t̂=
p−ω̃(d)
1−α

[ω̃(d)− p+ (1− α)t]dF (t)

= (1− α)

∫ t

t̂=
p−ω̃(d)
1−α

[
−p− ω̃(d)

1− α
+ t

]
dF (t) = (1− α)H

(
p− ω̃(d)

1− α

)
. (A.67)

Note that ∂
∂d
DU(p; ω̃(d)) = −H

(
p−ω̃(d)

1−α

)
∂ω̃(d)
∂d

, and ∂ω̃(d)
∂d

= ∂ω̂(d|t)
∂d

; hence, t̂(d|t) = p − ω̂(d|t)
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implies ∂ω̃(d)
∂d

= −∂t̂(d|t)
∂d

. Since t̂(d|t) solves L
(
t̂−αt
1−α ; d

)
= 0, we have

∂t̂(d|t)
∂d

= −
(
∂

∂d
L

(
t̂− αt
1− α

; d

))(
∂

∂t̂
L

(
t̂− αt
1− α

; d

))−1 ∣∣∣∣
t̂=t̂(d|t)

= − (−1)

(
(1− α)H

(
t̂− αt
1− α

)
1

1− α

)−1 ∣∣∣∣
t̂=t̂(d|t)

=

(
H

(
t̂− αt
1− α

))−1 ∣∣∣∣
t̂=t̂(d|t)

=

(
H

(
t̂(d|t)− αt

1− α

))−1

=

(
H

(
p− ω̂(d|t)− αt

1− α

))−1

=

(
H

(
p− ω̃(d)

1− α

))−1

, (A.68)

and therefore
∂ω̃(d)

∂d
= −∂t̂(d|t)

∂d
⇒ ∂ω̃(d)

∂d
= −

(
H

(
p− ω̃(d)

1− α

))−1

, (A.69)

which further implies that ∂
∂d
DU(p; ω̃(d)) = 1. Thus, DU as a function of the observed equilibrium

quantity must vary identically with d; that is, DU(p; ω̃(d)) = d+ c for some constant c. But the only
constant generically consistent with the required equilibrium condition of d = λDI(p; ω̄(s)) + (1−
λ)DU(p; ω̃(d)) is c = 0. Thus, in equilibrium, ω̃(d) must be such that DU(p; ω̃(d)) = DI(p; ω̄(s)),
so that d = DI(p; ω̄(s)). For shorthand, let ω̂(t) denote ω̂(d|t) evaluated at d = DI(p; ω̄(s)).

Part 1. As previously established, an uninformed agent with taste t forms an estimate of ω equal
to ω̂(t) = ω̃(d)−αt, where ω̃(d) is independent of t. Thus, ω̂(t) is decreasing in t whenever α > 0.

Part 3. We prove Part 3 before Part 2. As argued above, in equilibrium DU(p; ω̃(d)) =
DI(p; ω̄(s)) must hold. Recall that t∗ = p− ω̄(s) and t̂ = (p− ω̃(d))/(1− α) are the marginal in-
formed and uninformed types, respectively. From (A.64) and (A.67), we have DI(p; ω̄(s)) = H(t∗)
and DU(p; ω̃(d)) = (1−α)H(t̂). Hence, in equilibrium, we must have H(t∗) = (1−α)H(t̂). Since
H is strictly decreasing, t̂ < t∗ whenever α > 0.

Part 2. Next, we argue that the uninformed marginal type overestimates ω; that is t̂ < t∗ if
and only if (p − ω̃(d))/(1 − α) < p − ω̄(s) which is equivalent to ω̃(d) > (1 − α)ω̄(s) + αp.
This in turn implies that ω̂(t̂) > ω̄(s) since ω̂(t̂) = ω̃(d) − αt̂ = ω̃(d) − α(p − ω̃(d))/(1 − α).
Thus, ω̂(t̂) > ω̄(s). Furthermore, there must exist a t̃ ∈ (t̂, t) such that ω̂(t̃) = ω̄(s). If such
a type did not exist, then the fact that ω̂(t) = ω̃(d) − αt would imply that all uninformed types
who buy in equilibrium overestimate ω̄(s). But this, together with the fact that t̂ < t∗, would
then imply that DU(p; ω̃(d)) > DI(p; ω̄(s)) since, relative to informed types, a wider interval of
uninformed types buy and they all overestimate ω̄(s). Yet this contradicts the requirement that
DU(p; ω̃(d)) = DI(p; ω̄(s)), and hence there exists a t̃ ∈ (t̂, t) such that ω̂(t̃) = ω̄(s); moreover,
ω̂(t) = ω̃(d)−αt implies that ω̂(t) > ω̄(s) for t < t̃ and ω̂(t) < ω̄(s) for t > t̃. Since an uninformed
type demands x∗(p; ω̂(t), t) = ω̂(t) + t− p, we additionally have x∗(p; ω̂(t), t) > x∗(p; ω̄(s), t) for
t < t̃ and x∗(p; ω̂(t), t) < x∗(p; ω̄(s), t) for t > t̃.

Part 4. Note that
∣∣x∗(p; ω̂(t), t) − x∗(p; ω̄(s), t)

∣∣ =
∣∣ω̂(t) − ω̄(s)

∣∣ =
∣∣ω̃(d) − ω̄(s) − αt

∣∣. By
definition of t̃, ω̂(t̃) = ω̃(d)−αt̃ = ω̄(s). Thus,

∣∣ω̃(d)− ω̄(s)−αt
∣∣ =

∣∣ω̃(d)− [ω̃(d)−αt̃]−αt
∣∣ =∣∣αt̃− αt∣∣, and hence

∣∣x∗(p; ω̂(t), t)− x∗(p; ω̄(s), t)
∣∣ = α|t− t̃|. �
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